77 resultados para Cortical and cerebellar astroglia
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
Resumo:
Background: The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method: Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results: BD individuals scored significantly higher on these spectrum measures than healthy individuals (p<0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p<0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p<0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p<0.02) and neutral faces (p<0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BID individuals. Limitations: Small sample size of predominantly medicated BD individuals. Conclusion: This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
Background: Obsessive-compulsive disorder (OCD) is a clinically heterogenous disorder characterized by temporally stable symptom dimensions. Past inconsistent results from structural neuroimaging studies of OCD may have resulted from the effects of these specific symptom dimensions as well as other socio-demographic and clinical variables upon gray matter (GM) volume. Methods: GM volume was measured in 25 adult OCD patients and 20 adult healthy controls using voxel-based morphometry (VBM), controlling for age and total brain GM volume. Univariate and multivariate regression analyses were carried out between regions of GM difference and age, age of onset, medication load, OCD severity, depression severity, and separate symptom dimension scores. Results: Significant GM volumetric differences in OCD patients relative to controls were found in dorsal cortical regions, including bilateral BA6, BA46, BA9 and right BA8 (controls > patients), and bilateral midbrain (patients > controls). Stepwise regression analyses revealed highly significant relationships between greater total OCD symptom severity and smaller GM volumes in dorsal cortical regions and larger GM volumes in bilateral midbrain. Greater age was independently associated with smaller GM volumes in right BA6, left BA9, left BA46 and larger GM volumes in right midbrain. Greater washing symptom severity was independently associated with smaller GM volume in right BA6, while there was a trend association between greater hoarding symptom severity and lower GM volume in left BA6. Limitations: The sample was relatively small to examine the relationship between symptom scores and GM volumes. Multiple patients were taking medication and had comorbid disorders. Conclusions: These analyses suggest dorsal prefrontal cortical and bilateral midbrain GM abnormalities in OCD that appear to be primarily driven by the effects of total OCD symptom severity. The results regarding the relationship between GM volumes and symptom dimension scores require examination in larger samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBE), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, alpha-chloralose and 2% isoflurane (1.5 MAC). Repeated CBE measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under alpha-chloralose, whole brain CBE at normocapnia did not differ between groups (young WKY: 61 3 ml/100 g/min; adult WKY: 62 +/- 4 ml/100 g/min; young SHR: 70 +/- 9 ml/100 g/min: adult SHR: 69 8 ml/100 g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBE values increased significantly, and a linear relationship between CBE and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBE in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 +/- 25 ml/100 g/min; adult SHR: 104 +/- 23 ml/100 g/min; young WKY: 55 +/- 9 ml/100 g/min; adult WKY: 71 +/- 19 ml/100 g/min). CBE values increased significantly with increasing CO(2): however, there was a clear saturation of CBF at PaCO(2) levels greater than 70 mm Hg in both young and adult rats, regardless of absolute CBE values, suggesting that isoflurane interferes with the vasoclilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. Published by Elsevier Inc.
Resumo:
Our goal was to evaluate bone neoformation promoted by a bovine xenograft composite (XC) compared with autogenous graft for maxillary sinus augmentation in a rabbit model. The left maxillary sinus of 18 male rabbits was filled with 200 mg of cortical and cancellous autogenous bone and the right sinus was filled with 200 mg of a composite comprised organic and inorganic bovine matrices, pool of bBMPs and collagen. Postoperative implant intervals of 2, 4, and 8 weeks were analyzed. Differences in the bone optical density among the groups and experimental periods were evaluated by computed tomography analysis. The tissue response was evaluated by histomorphometric analysis of the newly formed bone, connective tissue and/or granulation tissue, residual material, and bone marrow. The tomographic analyses showed a maximum optical density in the 4-week period for both groups. Histologically, an inflammatory infiltrate was observed at 2 weeks in the XC group but exclusively around the organic particles of the biomaterial. Regarding to the amount of newly formed bone, no statistical differences (p > 0.05) were observed among the two treatments throughout the implant intervals. However, by the end of the 8 weeks, the quantity of bone marrow was two times greater (p < 0.05) in the control group than in the XC group. In conclusion, the xenograft composite promotes formation of new bone in a similar fashion to autogenous bone and could therefore be considered a biomaterial with potential applications as a bone substitute in maxillary sinus floor augmentation. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
Chronic infusion of human amyloid-beta 1-40 (A beta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of A beta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of A beta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of A beta. Male C57BI/6 J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12 weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550 pmol, 0.12 mu L/h, 28 days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (TO), 7 and 35 days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt = 59.7 +/- 6.7%; CkoB1 = 46.7 +/- 4.0%; CkoB2 = 64.4 +/- 5.8%) and A beta (A beta wt = 66.0 +/- 3.0%; A beta koB1 = 66.8 +/- 8.2%; A beta koB2 = 58.7 +/- 5.9%) groups. In T7, A beta koB2 showed a significant decrease in CAR (41.0 +/- 8.6%) compared to the control-koB2 (72.8 +/- 2.2%, P <0.05). In T35, a significant decrease (P <0.05) was observed in A beta wt (40.7 +/- 3.3%) and A beta koB2 (41.2 +/- 10.7%) but not in the A beta koB1 (64.0 +/- 14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could playan important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
There is evidence of increased systemic expression of active GSK3B in Alzheimer`s disease patients, which apparently is associated with the formation of senile plaques and neurofibrillary tangles. Due to its central role in the pathogenesis of AD, GSK3B is currently a promising target of the pharmaceutical industry. Whilst trials with specific GSK inhibitors in AD are under way, major attention has been focused on the neuroprotective effects of lithium. Whereas the direct and indirect inhibitory effects of lithium over GSK3 activity have been documented by several groups, its effects over Gsk3 transcription have not yet been addressed. We used quantitative PCR to evaluate the transcriptional regulation of Gsk3a and Gsk3b in lithium-treated primary cultures of rat cortical and hippocampal neurons. We found a significant and dose-dependent reduction in the expression of Gsk3b, which was specific to hippocampal cells. This same effect was further confirmed in vivo by measuring Gsk3 expression in different brain regions and in peripheral leukocytes of adult rats treated with lithium. Our studies show that LiCl can modulate Gsk3b transcription in vitro and in vivo. This observation suggest new regulatory effects of lithium over Gsk3b, contributing to the better understanding of its mechanisms of action, offering a new and complementary explanation for Gsk3b modulation and reinforcing its potential for the inhibition of key pathological pathways in Alzheimer`s disease.
Resumo:
In this study we analyzed the topography of induced cortical oscillations in 20 healthy individuals performing simple attention tasks. We were interested in qualitatively replicating our recent findings on the localization of attention-induced beta bands during a visual task [1], and verifying whether significant topographic changes would follow the change of attention to the auditory modality. We computed corrected latency averaging of each induced frequency bands, and modeled their generators by current density reconstruction with Lp-norm minimization. We quantified topographic similarity between conditions by an analysis of correlations, whereas the inter-modality significant differences in attention correlates were illustrated in each individual case. We replicated the qualitative result of highly idiosyncratic topography of attention-related activity to individuals, manifested both in the beta bands, and previously studied slow potential distributions [2]. Visual inspection of both scalp potentials and distribution of cortical currents showed minor changes in attention-related bands with respect to modality, as compared to the theta and delta bands, known to be major contributors to the sensory-related potentials. Quantitative results agreed with visual inspection, supporting to the conclusion that attention-related activity does not change much between modalities, and whatever individual changes do occur, they are not systematic in cortical localization across subjects. We discuss our results, combined with results from other studies that present individual data, with respect to the function of cortical association areas.
Resumo:
Introduction: Cerebral ischemia is an important cause of brain lesion in humans. The target in research has been the ischemic core or the penumbra zones; little attention has been given to areas outside the core or the penumbra but connected with the primary site of injury. Objective: Evaluate the laminar response of a subpopulation of gabaergic cells, those that are parvalbumin (PV) positive and the astrocytes through the expression of the glial transporter GLT1 on the contralateral cortex to an ischemic core. Methodology: For this purpose we used the medial cerebral artery occlusion model in rats. The artery was occluded for 90 minutes and the animals were sacrificed at 24 and 72 hours post-ischemia. The brains were removed, cut in a vibratome at 50 microns and incubated with the primary antibodies against PV or GLT1. Sections were developed using the vectastain Kit. In control tissue the primary antibody was omitted. Results: When compared with control animals, treated ones show a decrease in the expression of GLT1, especially in layers III and IV of the contralateral cortex to the ischemic core. PV positive cells increases in layers II and V. Conclusion: Increases in the expression of PV cells could correspond to an adaptation associated with glutamate increases in the synaptic compartment. These increases may be due to decreases in the expression of GLT1 transporter, that could not remove the glutamate present in the synaptic cleft, generating hyperactivity in the contralateral cortex. These changes could represent an example of neuronal and glial plasticity in remote areas to an ischemic core but connected to the primary site of injury.
Resumo:
Objective: To investigate the possible role of chromatin texture parameters, nuclear morphology, DNA ploidy and clinical functional status in discriminating benign from malignant adrenocortical tumors (ACT). Patients and Methods: Forty-eight cases of clinically benign (n=40) and clinically malignant (n=8) ACT with a minimum of 5-years` follow-up were evaluated for chromatin texture parameters (run length, standard deviation, configurable run length, valley, slope, peak and other 21 Markovian features that describe the distribution of the chromatin in the nucleus), nuclear morphology (nuclear area, nuclear perimeter, nuclear maximum and minumum diameter, nuclear shape), and DNA ploidy. Nuclear parameters were evaluated in Feulgen-stained 5 mu m paraffin-sections analyzed using a CAS 200 image analyzer. Results: Since ACTs present different biological features in children and adults, patients were divided into two groups: children (<= 15 years) and adults (>15 years). In the group of children DNA ploidy presented a marginal significance (p=0.05) in discriminating ACTs. None of the parameters discriminated between malignant and benign ACT in the adult group. Conclusion: ACTs are uncommon and definitive predictive criteria for malignancy remain uncertain, particularly in children. Our data point to DNA content evaluated by image analysis as a new candidate tool for this challenging task. Texture image analysis did not help to differentiate malignant from benign adrenal cortical tumors in children and adults.
Resumo:
The aim of this study was to evaluate risk factors for low bone mineral density (BMD) and vertebral fractures, in juvenile systemic lupus (JSLE). Thirty-one consecutive patients with JSLE were compared with 31 gender- and age-matched healthy controls. BNID and body composition from all participants were measured using dual-energy X-ray absorptiometry. Vertebral fractures were defined as a reduction of >= 20% of the vertebral height for all patients. Lumbar spine and total femur BMD was significantly decreased in patients compared with controls (P = 0.021 and P = 0.023, respectively). A high frequency of vertebral fractures (22.58%) was found in patients with JSLE. Analysis of body composition revealed lower lean mass (P = 0.033) and higher fat mass percentage (P = 0.003) in patients than in controls. Interestingly, multiple linear regression using BMD as a dependent variable showed a significant association with lean mass in lumbar spine (R(2) = 0.262; P = 0.004) and total femur (R(2) = 0.419, P = 0.0001), whereas no association was observed with menarche age, SLE Disease Activity Index, Systemic Lupus International Collaborating Clinics/American College of Rheumatology, and glucocorticoid. This study indicates that low BMD and vertebral fractures are common in JSLE, and the former is associated with low lean mass, suggesting that muscle rehabilitation may be an additional target for bone therapeutic approach.