129 resultados para Chemical reactors
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
A simple calorimetric method to estimate both kinetics and heat transfer coefficients using temperature-versus-time data under non-adiabatic conditions is described for the reaction of hydrolysis of acetic anhydride. The methodology is applied to three simple laboratory-scale reactors in a very simple experimental setup that can be easily implemented. The quality of the experimental results was verified by comparing them with literature values and with predicted values obtained by energy balance. The comparison shows that the experimental kinetic parameters do not agree exactly with those reported in the literature, but provide a good agreement between predicted and experimental data of temperature and conversion. The differences observed between the activation energy obtained and the values reported in the literature can be ascribed to differences in anhydride-to-water ratios (anhydride concentrations). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 mu g PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1) day(-1) for RI, and from 0.06 to 4.15 mg PCP l(-1) day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 24 h for R1 and 18 In for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
This study evaluated two different support materials (polystyrene and expanded clay) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBRs contained either polystyrene (R1) or expanded clay (R2) as support materials were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C and a pH of approximately 5.5. The AFBRs were operated with a range of hydraulic retention times (HRTs) between 1 and 8 h. For R1 with an HRT of 2 h, the maximum hydrogen yield (HY) was 1.90 mol H(2) mol(-1) glucose, with 0.805 mg of biomass (as total volatile solids, or TVS) attached to each g of polystyrene. For R2 operated at an HRT of 2 h, the maximum HY was 2.59 mol H(2) moll glucose, with 1.100 mg of attached biomass (as TVS) g(-1) expanded clay. The highest hydrogen production rates (HPR) were 0.95 and 1.21 L h(-1) L(-1) for R1 and R2, respectively, using an HRT of 1 h. The H(2) content increased from 16-47% for R1 and from 22-51% for R2. No methane was detected in the biogas produced throughout the period of AFBR operation. These results show that the values of HY, HPR, H(2) content, and g of attached biomass g(-1) support material were all higher for AFBRs containing expanded clay than for reactors containing polystyrene. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Prosthetic restorations that have been tried in the patient's mouth are potential sources of infection. In order to avoid cross-infection, protocols for infection control should be established in dental office and laboratory. This study evaluated the antimicrobial efficacy of disinfectants on full metal crowns contaminated with microorganisms. Full crowns cast in a Ni-Cr alloy were assigned to one control group (n=6) and 5 experimental groups (n=18). The crowns were placed in flat-bottom glass balloons and were autoclaved. A microbial suspension of each type of strain - S. aureus, P. aeruginosa, S. mutans, E. faecalis and C. albicans- was aseptically added to each experimental group, the crowns being allowed for contamination during 30 min. The contaminated specimens were placed into recipients with the chemical disinfectants (1% and 2% sodium hypochlorite and 2% glutaraldehyde) for 5, 10 and 15 min. Thereafter, the crowns were placed into tubes containing different broths and incubated at 35ºC. The control specimens were contaminated, immersed in distilled water for 20 min and cultured in Thioglycollate broth at 35ºC. Microbial growth assay was performed by qualitative visual examination after 48 h, 7 and 12 days. Microbial growth was noticed only in the control group. In the experimental groups, turbidity of the broths was not observed, regardless of the strains and immersion intervals, thus indicating absence of microbial growth. In conclusion, all chemical disinfectants were effective in preventing microbial growth onto full metal crowns.
Resumo:
This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.
Resumo:
The purpose of this study was to evaluate the hydrogenionic potential and electrical conductivity of Portland cements and MTA, as well as the amount of arsenic and calcium released from these materials. In Teflon molds, samples of each material were agitated and added to plastic flasks containing distilled water for 3, 24, 72 and 168 h. The results were analyzed with a Kruskal-Wallis non-parametric test for global comparisons and a Dunn-Tukey test for pairwise comparisons. The results revealed no significant differences in the pH of the materials (p > 0.05). The electrical conductivity of the cements were not statistically different (p > 0.05). White non-structural cement and MTA BIO released the largest amount of calcium ions into solution (p < 0.05), while arsenic release was insignificant in all of the materials (p > 0.05). The results indicated that the physico-chemical properties of Portland cements and MTA were similar. Furthermore, all materials produced an alkaline environment and can be considered safe for clinical use because arsenic was not released. The electrical conductivity and the amount of calcium ions released into solution increased over time.
Resumo:
The mechanical control of supragingival biofilm is accepted as one of the most important measures to treat and prevent dental caries and periodontal diseases. Nevertheless, maintaining dental surfaces biofilm-free is not an easy task. In this regard, chemical agents, mainly in the form of mouthwashes, have been studied to help overcome the difficulties involved in the mechanical control of biofilm. The aim of this paper was to discuss proposals for the teaching of supragingival chemical control (SCC) in order to improve dentists' knowledge regarding this clinical issue. Firstly, the literature regarding the efficacy of antiseptics is presented, clearly showing that chemical agents are clinically effective in the reduction of biofilm and gingival inflammation when used as adjuvant agents to mechanical control. Thus, it is suggested that the content related to SCC be included in the curricular grid of dental schools. Secondly, some essential topics are recommended to be included in the teaching of SCC as follows: skills and competencies expected of a graduate dentist regarding SCC; how to include this content in the curricular grid; teaching-learning tools and techniques to be employed; and program content.
Resumo:
Contents of proteins, carbohydrates and oil of seeds of 57 individuals of Vochysiaceae, involving one species of Callisthene, six of Qualea, one of Salvertia and eight of Vochysia were determined. The main nutritional reserves of Vochysiaceae seeds are proteins (20% in average) and oils (21. 6%). Mean of carbohydrate contents was 5. 8%. Callisthene showed the lowest protein content (16. 9%), while Q. cordata was the species with the highest content (30% in average). The contents of ethanol soluble carbohydrates were much higher than those of water soluble carbohydrates. Oil contents lay above 20% for most species (30. 4% in V. pygmaea and V. pyramidalis seeds). The predominant fatty acids are lauric (Q. grandiflora), oleic (Qualea and Salvertia) or acids with longer carbon chains (Salvertia and a group of Vochysia species). The distribution of Vochysiaceae fatty acids suggests for seeds of some species an exploitation as food sources (predominance of oleic acid), for other species an alternative to cocoa butter (high contents or predominance of stearic acid) or the production of lubricants, surfactants, detergents, cosmetics and plastic (predominance of acids with C20 or C22 chains) or biodiesel (predominance of monounsaturated acids). The possibility of exploitation of Vochysiaceae products in a cultivation regimen and in extractive reserves is discussed.
Resumo:
Gracilaria Greville is a genus of seaweed that is economically explored by the cosmetic, pharmaceutical and food industries. One of the biggest problems associated with growing Gracilaria is the discharge of heavy metals into the marine environment. The absorption of heavy metals was investigated with the macroalga Gracilaria tenuistipitata Zhang et Xia, cultivated in a medium containing copper (Cu) and cadmium (Cd). In biological samples, EC50 concentrations of 1 ppm for cadmium and 0.95 ppm for copper were used. These concentrations were based on seaweed growth curves obtained over a period of six days in previous studies. ICP-AES was used to determine the amount of metal that seaweeds absorbed during this period. G. tenuistipitata was able to bioaccumulate both metals, about 17% of copper and 9% of cadmium. Basal natural levels of Cu were found in control seaweeds and in G. tenuistipitata exposed to Cd. In addition, the repertoire of other important chemical elements, as well as their concentrations, was determined for G. tenuistipitata and two other important seaweeds, G. birdiae Plastino & Oliveira and G. domingensis (Kützing) Sonder ex Dickie, collected in natural environments on the Brazilian shore.
Resumo:
Pera glabrata (Schott) Baill. was selected for this study after showing a preliminary positive result in a screening of Atlantic Forest plant species in the search for acetylcholinesterase inhibitors and antifungal compounds. The bioassays were conducted with crude ethanol extract of the leaves using direct bioautography method for acetylcholinesterase and antifungal activities. This extract was partitioned with hexane, chloroform and ethyl acetate solvents. The active chloroform fraction was submitted to silica gel chromatography column affording 12 groups. Caffeine, an alkaloid, which showed detection limits of 0.1 and 1.0 µg for anticholinesterasic and antifungal activities, respectively, was isolated from group nine. After microplate analyses, only groups four, nine, 10, 11 and 12 showed acetylcholinesterase inhibitory activity of 40% or higher. The group 12 was purified by preparative layer chromatography affording four sub-fractions. Two sub-fractions from this group were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. The first sub-fraction showed anticholinesterasic activity and contained two major compounds: 9-hydroxy-4-megastigmen-3-one (84%) and caffeine (6%). The second sub-fraction presented five major compounds identified as 9-hydroxy-4-megastigmen-3-one, isololiolide, (-) loliolide, palmitic acid and lupeol and did not show activity.
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.