20 resultados para Cattle-embryo
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (W) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
In spite of numerous, substantial advances in equine reproduction, many stages of embryonic and fetal morphological development are poorly understood, with no apparent single source of comprehensive information. Hence, the objective of the present study was to provide a complete macroscopic and microscopic description of the equine embryo/fetus at various gestational ages. Thirty-four embryos/fetuses were aged based on their crown rump length (CRL), and submitted to macroscopic description, biometry, light and scanning microscopy, as well as the alizarin technique. All observed developmental changes were chronologically ordered and described. As examples of the main observed features, an accentuated cervical curvature was observed upon macroscopic examination in all specimens. In the nervous system, the encephalic fourth ventricle and the encephalic vesicles forebrain, midbrain, and hindbrain, were visualized from Day 19 (ovulation = Day 0). The thoracic and pelvic limbs were also visualized; their extremities gave rise to the hoof during development from Day 27. Development of other structures such as pigmented optical vesicle, liver, tail, cardiac area, lungs, and dermal vascularization started on Days 25, 25, 19, 19, 34, and 35, respectively. Light and scanning microscopy facilitated detailed examinations of several organs, e.g., heart, kidneys, lungs, and intestine, whereas the alizarin technique enabled visualization of ossification. Observations in this study contributed to the knowledge regarding equine embryogenesis, and included much detailed data from many specimens collected over a long developmental interval. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The study is based on 141 pregnant Bos indicus cows, from days 20 to 70 post-insemination. First, special attention was given to the macroscopically observable phenomena of attachment of the conceptus to the uterus, i.e. the implantation, from about days 20 to 30 post-insemination up to day 70, and placentome development by growth, vascularization and increase in the number of cotyledons opposite to the endometrial caruncles. Secondly, as for the conceptuses, semiquantitative, statistical analyses were performed of the lengths of chorio-allantois, amnion and yolk sac; and the different parts of the centre and two extremes of the yolk sacs were also analysed. Thirdly, the embryos/foetuses corresponding to their membranes were measured by their greatest length and by weight, and described by the appearance of external developmental phenomena during the investigated period like neurulation, somites, branchial arcs, brain vesicles, limb buds, C-form, pigmented eye and facial grooves. In conclusion, all the data collected in this study from days 20 to 70 of bovine pregnancy were compared extensively with corresponding data of the literature. This resulted in an `embryo/foetal age-scale`, which has extended the data in the literature by covering the first 8 to 70 days of pregnancy. This age-scale of early bovine intrauterine development provides model for studies, even when using slaughtered cows without distinct knowledge of insemination or fertilization time, through macroscopic techniques. This distinctly facilitates research into the cow, which is now being widely used as `an experimental animal` for testing new techniques of reproduction like in vitro fertilization, embryo transfer and cloning.
Resumo:
The objective of this study was to identify and quantify the influence of F (inbreeding coefficient) on weaning weight (WW), weight gain from weaning to 18 months of age (WG345), finishing visual score (precocity) at 18 months of age, muscling visual score at 18 months of age (MUS), hip height (HH), scrotal circumference at 18 months of age (SC), heifer probability of pregnancy at 14 months of age (PP14), and stayability (STAY) in Brazilian Nellore cattle. The complete pedigree included 417,552 animals born between 1984 and 2007 on 12 farms located in the states of Mato Grosso do Sul, Sao Paulo and Bahia. Following the observation of a statistically significant effect (P<0.05) of the covariates individual inbreeding coefficient (F) and maternal inbreeding coefficient, regression analysis of each trait, adjusted for all other effects, was performed as a function of the linear and quadratic effect of F and maternal F (when significant). Inbreeding negatively affected all traits studied (P<0.05), except for muscling. A quadratic effect of individual F on WW, WG345, HH and PP14, and a quadratic effect of maternal F on WG345 and HH were observed. Levels of inbreeding higher than 7-11% affected negatively growth and reproductive performance of Nellore cattle. Therefore, inbreeding should be avoided, except for purposes of genetic breeding whose main objective is the fixation of certain alleles in the population. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective: To identify genes specifically expressed in mammalian oocytes using an in silico subtraction, and to characterize the mRNA patterns of selected genes in oocytes, embryos, and adult tissues. Design: Comparison between oocyte groups and between early embryo stages. Setting: Laboratories of embryo manipulation and molecular biology from Departamento de Genetica (FMRP) and Departamento de Ciencias Basicas (FZEA) - University of Sao Paulo. Sample(s): Oocytes were collected from slaughtered cows for measurements, in vitro fertilization, and in vitro embryo culture. Somatic tissue, excluding gonad and uterus tissue, was collected from male and female cattle. Main Outcome Measure(s): Messenger RNA levels of poly(A)-binding protein nuclear-like 1 (Pabpnl1) and methyl-CpG-binding domain protein 3-like 2 (Mbd3l2). Result(s): Pabpnl1 mRNA was found to be expressed in oocytes, and Mbd3l2 transcripts were present in embryos. Quantification of Pabpnl1 transcripts showed no difference in levels between good-and bad-quality oocytes before in vitro maturation (IVM) or between good-quality oocytes before and after IVM. However, Pabpnl1 transcripts were not detected in bad-quality oocytes after IVM. Transcripts of the Mbd3l2 gene were found in 4-cell, 8-cell, and morula-stage embryos, with the highest level observed in 8-cell embryos. Conclusion(s): Pabpnl1 gene expression is restricted to oocytes and Mbd3l2 to embryos. Different Pabpnl1 mRNA levels in oocytes of varying viability suggest an important role in fertility involving the oocyte potential for embryo development. (Fertil Steril (R) 2010; 93: 2507-12. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro
Resumo:
The effect of s-nitroso-N-acetyl-1,1-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10(-3) M SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10(-5) M SNAP showed intermediate proportions (55%). For 10(-7) M SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10(-5) M SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10(-7) M SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.
Resumo:
The placenta of mammals is a structure formed by the juxtaposition of the fetal membranes and the maternal tissues. The main function of the placenta is to regulate the physiological interchange between the fetus and the mother as well as to operate as an important endocrine organ during the gestation. The placentomal fusions were characterized throughout gestation of cattle using macroscopic, histological and flow cytometry analyses. Analyzing the cell cycle phases with a flow cytometry, a balance between the G2M phase and apoptosis was observed, suggesting that the placentomal fusions do not interfere in the placentary maturation process, which is a pre-requirement for the fetal-maternal disconnection and the release of fetal membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The production of a healthy cloned calf is dependent on a multitude of successful steps, including reprogramming mediated by the oocyte, the development of a functional placenta, adequate maternal-fetal interaction, the establishment of a physiological metabolic setting and the formation of a complete set of well-differentiated cells that will eventually result in well-characterised and fully competent tissues and organs. Although the efficiency of nuclear transfer has improved significantly since the first report of a somatic cell nuclear transfer-derived animal, there are many descriptions of anomalies concerning cloned calves leading to high perinatal morbidity and mortality. The present article discusses some our experience regarding perinatal and neonatal procedures for cloned Zebu cattle (B. indicus) that has led to improved survival rates in Nellore cloned calves following the application of such `labour-intensive technology`.
Resumo:
The Tiete River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tiete River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity Sao Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissao and Tres Irmaos). Results confirm that most toxicity is due to the discharges of the metropolitan area of Sao Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.