38 resultados para Anti-CD25 (PC61)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR. After 24 h of reperfusion, depletion of TCD4(+)CTLA4(+)Foxp3(+) cells reached 30.3%(spleen) and 67.8%(lymph nodes). 72 h after reperfusion depletion reached 43.1%(spleen) and 90.22%(lymph nodes) and depleted animals presented with significantly poorer renal function, while DTA-1 (anti-GITR)-treated ones showed a significant protection, all compared to serum urea from control group (IgG: 150.10 +/- 50.04; PC61: 187.23 +/- 31.38; DTA-1: 64.53 +/- 25.65, mg/dL, p<0.05). These data were corroborated by histopathology. We observed an increase of HO-1 expression in animals treated with DTA-1 at 72 h of reperfusion with significant differences. Thus, our results suggest that PC61 (anti-CD25) mAb treatment is deleterious, while DTA-1 (anti-GITR) mAb treatment presents a protective role in the renal IRI, indicating that some regulatory populations of T cells might have a role in IRI. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas` disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 mu g/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7.6-fold), heart (3-fold) and small intestine (3.6-fold). Moreover, an intense inflammatory response and increment of CD4(+) T cells (1.7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4(+)CD25(+)FoxP3(+) T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas` disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the study: Magnolia ovata (A.St.-Hil.) Spreng (formerly Talauma ovata), known as ""pinha-do-brejo"" or ""baguacu"", is a large tree widely distributed in Brazil. Its trunk bark has been used in folk medicine against fever. However, no data have been published to support the antipyretic ethnopharmacological use. This study investigated the antipyretic and anti-inflammatory effects of the ethanolic extract (EEMO). dichloromethane fraction (DCM), and the isolated compound costunolide. Materials and methods: The antipyretic and anti-inflammatory activities were evaluated in experimental models of fever and inflammation in mice. Results: The oral administration of EEMO, DCM and costunolide inhibited carrageenan (Cg)-induced paw oedema (ID(50) 72.35 (38.64-135.46) mg/kg, 5.8 (2.41-14.04) mg/kg and 0.18 (0.12-0.27) mg/kg, respectively) and was effective in abolishing lipopolysaccharide (LPS)-induced fever (30 mg/kg, 4.5 mg/kg and 0.15 mg/kg, respectively). EEMO was also effective in reducing cell migration in the pleurisy model. Intraplantar injection of costunolide also reduced the paw oedema, myeloperoxidase and N-acetyl-glucosaminidase activity induced by Cg in mice. Conclusions: Collectively, these results show, for the first time, that extracts obtained from Magnolia ovata possess antipyretic and anti-inflammatory properties, and costunolide appears to be the compound responsible for these effects. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that PAS-1, a 200 kDa protein from Ascaris suum, has a potent immunomodulatory effect on humoral and cell-mediated responses induced by APAS-3 (an allergenic protein from A. suum) or unrelated antigens. In this study, we investigated the mechanisms by which PAS-1 is able to induce this effect on an allergic airway inflammation induced by OVA in mice. C57BL/6 mice were adoptively transferred on day 0 with seven different PAS-1-primed cell populations: PAS-1-primed CD19(+) or B220(+) or CD3(+) or CD4(+) or CD8(+) or CD4(+) CD25) or CD4(+) CD25(+) lymphocytes. These mice were immunized twice with OVA and alum by intraperitoneal route (days 0 and 7) and challenged twice by intranasal route (days 14 and 21). Two days after the last challenge, the airway inflammation was evaluated by antibody levels, cellular migration, eosinophil peroxidase levels, cytokine and eotaxin production, and pulmonary mechanical parameters. Among the adoptively transferred primed lymphocytes, only CD4(+) CD25(+), CD8(+) or the combination of both T cells impaired the production of total IgE and OVA-specific IgE and IgG1 antibodies, eosinophilic airway inflammation, Th2-type cytokines (IL-4, IL-5 and IL-13), eotaxin release and airway hyperreactivity. Moreover, airway recruited cells from CD4(+) CD25(+) and CD8(+) T-cell recipient secreted more IL-10/TGF-beta and IFN-gamma, respectively. Moreover, we found that PAS-1 expands significantly the number of CD4(+) CD25(+) FoxP3(+) and CD8(+) gamma delta TCR(+) cells. In conclusion, these findings demonstrate that the immunomodulatory effect of PAS-1 is mediated by these T-cell subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study assessed the prevalence of anti-Leishmania spp antibodies in dogs from the city of Monte Negro, State of Rondonia, Brazil ELISA (NE >= 3) and IFAT (>= 1 40) were used to evaluate 161 serum samples collected from rural dogs from Monte Negro Forty-five (27 9%) dogs were positive by ELISA tests and five (3 1%) were positive by IFAT The present study showed for the first time the frequency of exposure to Leishmania spp in dogs in the State of Rondonia, Amazon Region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microplusin, a Rhipicephalus (Boophilus) microplus anti-microbial peptide (AMP) is the first member of a new family of cysteine-rich AMPs with histidine-rich regions at the N- and C-termini, which is being fully characterized by biophysical and biochemical methods. Here we report the NMR resonance assignments for (1)H, (15)N, and (13)C nuclei in the backbone and side chains of the microplusin as basis for further studies of structure, backbone dynamics and interactions mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Ru-2(dNSAID)(4)Cl] and novel [Ru-2(dNSAID)(4)(H2O)(2)]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru-2(II, III) cores where metal-metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru-2(II,III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen, The possibility that the complexes Ru-2-ibp and Ru-2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenotypic pressure exerted by non-steroidal anti-inflammatory drugs (NSAIDs) on autochthonous and pathogenic microbiota remains sparsely known. In this study, we investigated if some NSAIDs increment or diminish the secretion of aspartyl-proteases (Sap) by Candida albicans grown under different phenotypes and oxygen availability using a set of SAP knock-out mutants and other set for genes (EFG1 and CPH1) that codify transcription factors involved in filamentation and protease secretion. Preconditioned cells were grown under planktonic and biofilm phenotypes, in normoxia and anoxia, in the presence of plasma concentrations of acetylsalicylic acid, diclofenac, indomethacin, nimesulide, piroxicam, ibuprofen, and acetaminophen. For diclofenac, indomethacin, nimesulide, and piroxicam the secretion rates of Sap by SAP1-6, EFG1. and CPH1 mutants were similar or, even, inferior to parental wildtype strain. This suggests that neither Sap 1-6 isoenzymes nor Efg1/Cph1 pathways may be entirely responsible for protease release when exposed to these NSAIDs. Ibuprofen and acetaminophen enhanced Sap secretion rates in three environmental conditions (normoxic biofilm, normoxic planktonic and anoxic planktonic). In other hand, aspirin seems to reduce the Sap-related pathogenic behavior of candidal biofilms. Modulation of Sap activity may occur according to candidal phenotypic state, oxygen availability, and type of NSAID to which the cells are exposed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common Variable Immunodeficiency (CVID) is a primary immunodeficiency disease characterized by defective immunoglobulin production and often associated with autoimmunity. We used flow cytometry to analyze CD4(+)CD25(HIGH)FOXP3(+) T regulatory (Treg) cells and ask whether perturbations in their frequency in peripheral blood could underlie the high incidence of autoimmune disorders in CVID patients. In this study, we report for the first time that CVID patients with autoimmune disease have a significantly reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells in their peripheral blood accompanied by a decreased intensity of FOXP3 expression. Notably, although CVID patients in whom autoimmunity was not diagnosed had a reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells, FOXP3 expression levels did not differ from those in healthy controls. In conclusion, these data suggest compromised homeostasis of CD4(+)CD25(HIGH)FOXP3(+) cells in a subset of CVID patients with autoimmunity, and may implicate Treg cells in pathological mechanisms of CVID. (C) 2009 Elsevier Inc. All rights reserved.