34 resultados para Annexin A2
Resumo:
Serious bleeding and thrombotic complications are frequent in acute promyelocytic leukemia (APL) and are major causes of morbidity and mortality. Microparticles (MP) have been used to study the risk and pathogenesis of thrombosis in many malignant disorders. To date, from published articles, this approach had not been applied to APL. In this article, the hemostatic dysfunction in this disorder is briefly reviewed. A study design to address this problem using MP is described. MP bearing tissue factor, profibrinolytic factors (tissue plasminogen activator and annexin A2), and the antifibrinolytic factor plasminogen activator inhibitor type 1 were measured using flow cytometry. The cellular origin of the MP was identified by specific cell surface markers. Comparison of the various populations of MP was made between samples collected at the time of diagnosis with those collected at molecular remission. Preliminary data suggest that this approach is feasible.
Resumo:
Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90% similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Annexin A1 (ANXA1) is a soluble cytoplasmic protein, moving to membranes when calcium levels are elevated. ANXA1 has also been shown to move to the nucleus or outside the cells, depending on tyrosine-kinase signalling, thus interfering in cytoskeletal organization and cell differentiation, mostly in inflammatory and neoplastic processes. The aim was to investigate subcellular patterns of immunohistochemical expression of ANXA1 in neoplastic and non-neoplastic samples from patients with laryngeal squamous cell carcinomas (LSCC), to elucidate the role of ANXA1 in laryngeal carcinogenesis. Serial analysis of gene expression experiments detected reduced expression of ANXA1 gene in LSCC compared with the corresponding non-neoplastic margins. Quantitative polymerase chain reaction confirmed ANXA1 low expression in 15 LSCC and eight matched normal samples. Thus, we investigated subcellular patterns of immunohistochemical expression of ANXA1 in 241 paraffin-embedded samples from 95 patients with LSCC. The results showed ANXA1 down-regulation in dysplastic, tumourous and metastatic lesions and provided evidence for the progressive migration of ANXA1 from the nucleus towards the membrane during laryngeal tumorigenesis. ANXA1 dysregulation was observed early in laryngeal carcinogenesis, in intra-epithelial neoplasms; it was not found related to prognostic parameters, such as nodal metastases.
Resumo:
In this study, the effect of phospholipase A2 (PLA2) derived from Crotalus durissus collilineatus was evaluated in vitro and in vivo on experimental cutaneous leishmaniasis. The promastigote and amastigote forms treated with PLA2 presented increased growth rate. In vivo studies showed that PLA2-treated Leishmania (Leishmania) amazonensis promastigotes increased the size of lesions in BALB/c mice, and histopathological analysis showed numerous necrotic regions presenting a higher density of polymorphonuclear, mononuclear, and amastigote cells. Additionally, infected macrophages treated with PLA2 were able to generate prostaglandin E2 (PGE2). Cytokine quantification showed that the supernatant from infected macrophages presented moderate and high amounts of IL-2 and IL-10, respectively. However, in PLA2-treated infected macrophages, suppression of IL-2 levels occurred, but not of IL-10 levels. Observation also revealed that both the supernatant and lysate of L. (L.) amazonensis promastigotes exhibited PLA2 activity, which, in the presence of dexamethasone, showed no reduction in their activities; while glucocorticoid maintained the ability of promastigote forms to infect macrophages, which presented values similar to controls. In conclusion, the results indicate that PLA2 may be a progression factor for cutaneous leishmaniasis, since the PLA2 effect suppressed IL-2 levels and generated PGE2, an inflammatory lipid mediator.
Resumo:
Rhinosinusal polyps physiopathology is not fully understand, despite numerous hypotheses regarding its inflammatory process. Aims: a prospective study regarding the gene expression of proteins: anexin-1 and galectin-1, which has an anti-inflammatory action and is modulated by steroids. Materials and Methods: eleven patients with rhinosinusal polyps suffered a biopsy of their polyps at two moments: in the absence of systemic steroids and during its use. In the two samples we assessed the expression of these genes and compared it to the normal nasal mucosa in the middle meatus. Results: We noticed that the mean expression of the genes which code anexin-1 and galectin-1 was predominantly increased, regardless of the use of steroids in relation to the control nasal mucosa. Notwithstanding, in polyps without the use of steroids, the mean gene expression of anexin-1 was significantly higher than in the polyps which were under the use of steroids. Regarding galectin-1, there was no significant difference between the expression mean values before and after the use of systemic steroids. Conclusion: The genes present an expression increase in the polyp mucosa, regardless of the use of steroids; nonetheless, the relationship of these two genes of anti-inflammatory proteins with steroids did not happen the same way.
Resumo:
The aim of this study was to evaluate the effectiveness of low-level laser therapy (LLLT) on the improvement of the mandibular movements and painful symptoms in individuals with temporomandibular disorders (TMD). Forty patients were randomly divided into two groups (n=20): Group 1 received the effective dose (GaAlAs laser ? 830 nm, 40 mW, 5J/cm2) and Group 2 received the placebo application (0 J/cm2), in continuous mode on the affected condyle lateral pole: superior, anterior, posterior, and posterior-inferior, twice a week during 4 weeks. Four evaluations were performed: E1 (before laser application), E2 (right after the last application), E3 (one week after the last application) and E4 (30 days after the last application). The Kruskal-Wallis test showed significant more improvements (p<0.01) in painful symptoms in the treated group than in the placebo group. A significant improvement in the range of mandibular movements was observed when the results were compared between the groups at E4. Laser application can be a supportive therapy in the treatment of TMD, since it resulted in the immediate decrease of painful symptoms and increased range of mandibular movements in the treated group. The same results were not observed in the placebo group.
Resumo:
The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.
Resumo:
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Resumo:
Galectin-3 is a beta-galactoside-binding protein that has been shown to regulate pathophysiological processes, including cellular activation, differentiation and apoptosis. Recently, we showed that galectin-3 acts as a potent inhibitor of B cell differentiation into plasma cells. Here, we have investigated whether galectin-3 interferes with the lymphoid organization of B cell compartments in mesenteric lymph nodes (MLNs) during chronic schistosomiasis, using WT and galectin-3(-/-) mice. Schistosoma mansoni synthesizes GalNAc beta 1-4(Fuc alpha 1-3) GlcNAc(Lac-DiNAc) structures (N-acetylgalactosamine beta 1-4 N-acetylglucosamine), which are known to interact with galectin-3 and elicit an intense humoral response. Antigens derived from the eggs and adult worms are continuously drained to MLNs and induce a polyclonal B cell activation. In the present work, we observed that chronically-infected galectin-3(-/-) mice exhibited a significant reduced amount of macrophages and B lymphocytes followed by drastic histological changes in B lymphocyte and plasma cell niches in the MLNs. The lack of galectin-3 favored an increase in the lymphoid follicle number, but made follicular cells more susceptible to apoptotic stimuli. There were an excessive quantity of apoptotic bodies, higher number of annexin V(+)/PI(-) cells, and reduced clearance of follicular apoptotic cells in the course of schistosomiasis. Here, we observed that galectin-3 was expressed in nonlymphoid follicular cells and its absence was associated with severe damage to tissue architecture. Thus, we convey new information on the role of galectin-3 in regulation of histological events associated with B lymphocyte and plasma cell niches, apoptosis, phagocytosis and cell cycle properties in the MLNs of mice challenged with S. mansoni.
Resumo:
Cell cycle synchronization by serum starvation (SS) induces apoptosis in somatic cells. This side effect of SS is hypothesized to negatively affect the outcome of somatic cell nuclear transfer (SCNT). We determined whether apoptotic fibroblasts affect SCNT yields. Serum-starved, adult, bovine fibroblasts were stained with annexin V-FITC/propidium iodide to allow apoptosis detection by flow cytometry. Positive and negative cells sorted by fluorescence activated cell sorting (FACS) and an unsorted control group were used as nuclear donors for SCNT. Reconstructed embryos were cultured in vitro and transferred to synchronized recipients. Apoptosis had no effect on fusion and cleavage rates; however, it resulted in reductions in blastocyst production and quality measured by apoptotic index. However, reconstructed embryos with apoptotic cells resulted in pregnancy rates similar to that of the control on day 30, and generated one live female calf. In conclusion, we showed that apoptotic cells present in serum-starved cultures negatively affect embryo production after SCNT without compromising full-term development. Further studies will evaluate the ability of the oocyte to reprogram cells in specific phases of apoptosis.
Resumo:
A set of stacked ribbon samples with the compositions Fe(85)Ga(15), Fe(78)Ni(7)Ga(15) and Fe(78)Co(7)Ga(15) were prepared. XRD on these ribbons show that the binary Fe(85)Ga(15) ribbon exhibits the disordered A2 structure where as the addition of Co and Ni leads to the appearance of an additional ordered DO(3) structure. A comparison of the ratio of the XRD-line intensities gave strong evidence of a (100) texture perpendicular to the ribbon surface. The optical studied microstructure supports these results because it shows a columnar grain growth parallel to the solidification direction-which is parallel to ribbon thickness. The highest magnetostriction was found for Fe(78)Ni(7)Ga(15) (370 ppm), while the Fe(78)Co(7)Ga(15) a smaller magnetostriction of 270 ppm was found. The enhancement of the magnetostriction is attributed to the (100) texture in these ribbons. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fe(100-x)Ti(x) alloys (x = 10, 15, 20) were studied with respect to their microstructure and magnetostriction. Depending on heat treatment temperature and composition, the sample retained either the alpha-phase (A2 structure) or the alpha-phase plus the TiFe(2) Laves phase (C14 structure). The saturation magnetostriction measured at 238K is negative, about -11 ppm. However, for fields up to 0.4 T the magnetostriction is barely zero, a very interesting result. High values of magnetostriction are of interest for applications mainly in sensors and actuators, but zero magnetostriction is also a remarkable property, desirable for many applications such as electric transformers and fluxgate sensor cores. Therefore, the Fe(100-x)Ti(x) (x < 20 at%) are an attractive option to be considered for these applications.
Resumo:
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1 Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg(-1) dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg(-1) of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg(-1) of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha(-1) of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.