71 resultados para Amazonian deforestation
Resumo:
The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.
Resumo:
Deforestation in Brazilian Amazonia accounts for a disproportionate global scale fraction of both carbon emissions from biomass burning and biodiversity erosion through habitat loss. Here we use field- and remote-sensing data to examine the effects of private landholding size on the amount and type of forest cover retained within economically active rural properties in an aging southern Amazonian deforestation frontier. Data on both upland and riparian forest cover from a survey of 300 rural properties indicated that 49.4% (SD = 29.0%) of the total forest cover was maintained as of 2007. and that property size is a key regional-scale determinant of patterns of deforestation and land-use change. Small properties (<= 150 ha) retained a lower proportion of forest (20.7%, SD = 17.6) than did large properties (>150 ha; 55.6%, SD = 27.2). Generalized linear models showed that property size had a positive effect on remaining areas of both upland and total forest cover. Using a Landsat time-series, the age of first clear-cutting that could be mapped within the boundaries of each property had a negative effect on the proportion of upland, riparian, and total forest cover retained. Based on these data, we show contrasts in land-use strategies between smallholders and largeholders, as well as differences in compliance with legal requirements in relation to minimum forest cover set-asides within private landholdings. This suggests that property size structure must be explicitly considered in landscape-scale conservation planning initiatives guiding agro-pastoral frontier expansion into remaining areas of tropical forest. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.
Resumo:
Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September-October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1-1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.
Resumo:
In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 +/- 0.19 g m(-3)) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R(2) = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.
Resumo:
In an attempt to improve our understanding of the Paleoproterozoic geodynamic evolution, a paleomagnetic study was performed on 10 sites of acid volcanic rocks of the Colider Suite, southwestern Amazonian Craton. These rocks have a well-dated zircon U-Pb mean age of 1789 +/- 7 Ma. Alternating field and thermal demagnetization revealed northern (southern) directions with moderate to high upward (downward) inclinations. Rock magnetism experiments and magnetic mineralogy show that this characteristic magnetization is carried by Ti-poor magnetite or by hematite that replaces magnetite by late-magmatic cleuteric alteration. Both magnetite and hematite carry the same characteristic component. The mean direction (Dm = 183.0 degrees, Im = 53.5 degrees, N = 10, alpha(95) = 9.8 degrees, K = 25.2) yielded a paleomagnetic pole located at 298.8 degrees E, 63.3 degrees S (alpha(95) = 10.2 degrees, K = 23.6), which is classified with a quality factor Q = 5. Paleogeographic reconstructions using this pole and other reliable Paleoproterozoic poles suggest that Laurentia, Baltica, North China Craton and Amazonian Craton were located in laterally contiguous positions forming a large continental mass at 1790 Ma ago. This is reinforced by geological evidence which support the existence of the supercontinent Columbia in Paleoproterozoic times. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the `varzea` (VZ) floodplains and adjacent non-flooded `terra-firme` (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main nonstructural carbohydrate. Around 93% of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2.5%. In contrast, 74% of the endosperm in TF seeds was composed of galactomannans, while 22% of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution.
Resumo:
The Atlantic rainforest has the second highest biodiversity in Brazil. It has been shrinking rapidly in area as a result of intensive deforestation, and only 7% of the original cover now remains, as isolated patches or in ecological reserves. In order to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate relevant populations and extracted DNA from fresh leaves from 26 populations. The present-day distribution of endemic Podocarpus populations shows that they are widely dispersed across eastern Brazil, and that the expansion of Podocarpus recorded in single Amazonian pollen records may have originated from either western or eastern populations. Genetic analysis enabled us to determine the boundaries of their regional expansion: northern and central populations of P. sellowii appeared between 5 degrees and 15 degrees S some 16,000 years ago; populations of P lambertii or sellowii have appeared between 15 degrees and 23 degrees S at different times since the last glaciation at least; and P lambertii appeared between 23 degrees and 30 degrees S during the recent expansion of Araucaria forests. The combination of botanical, pollen, and molecular analyses proved to be a rapid means of inferring distribution boundaries for sparse populations and their regional evolution within tropical ecosystems. Today the rainforest refugia we identified have become hotspots that are crucial to the survival of the Atlantic forest under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of future climate change.
Resumo:
The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.
Resumo:
According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata`s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.
Resumo:
A variety of human-induced disturbances such as forest fragmentation and recovery after deforestation for pasture or agricultural activities have resulted in a complex landscape mosaic in the Una region of northeastern Brazil. Using a set of vegetation descriptors, we investigated the main structural changes observed in forest categories that comprise the major components of the regional landscape and searched for potential key descriptors that could be used to discriminate among different forest categories. We assessed the forest structure of five habitat categories defined as (I) interiors and (2) edges of large fragments of old-growth forest (>1000 ha), (3) interiors and (4) edges of small forest fragments (<100 ha), and (5) early secondary forests. Forest descriptors used here were: frequency of herbaceous lianas and woody climbers, number of standing dead trees, number of fallen trunks, litter depth, number of pioneer plants (early secondary and shade-intolerant species), vertical foliage stratification profile and distribution Of trees in different diameter classes. Edges and interiors of forest fragments were significantly different only in the number of standing dead trees. Secondary forests and edges of fragments showed differences in litter depth, fallen trunks and number of pioneer trees, and secondary forests were significantly different from fragment interiors in the number of standing dead trees and the number of pioneer trees. Horizontal and vertical structure evaluated via ordination analysis showed that fragment interiors, compared to secondary forests, were characterized by a greater number of medium (25-35 cm) and large (35-50 cm) trees and smaller numbers of thin trees (5-10 cm). There was great heterogeneity at the edges of small and large fragments, as these sites were distributed along almost the entire gradient. Most interiors of large and small fragments presented higher values of foliage densities at higher strata ( 15-20 m and at 20-25 m height), and lower densities at 1-5 m. All secondary forests and some fragment edge sites showed an opposite tendency. A discriminant function highlighted differences among forest categories, with transects of large fragment interiors and secondary forests representing two extremes along a disturbance gradient determined by foliage structure (densities at 15-20 m and 20-25 m), with the edges of both large and small fragments and the interiors of small fragments scattered across the gradient. The major underlying processes determining patterns of forest disturbance in the study region are discussed, highlighting the importance of forest fragments, independently of its size, as forests recovery after clear cut show a greatly distinct structure, with profound implications on fauna movements. (C) 2009 Elsevier BY. All rights reserved.
Resumo:
The 5` cis-regulatory region of the CCR5 gene exhibits a strong signature of balancing selection in several human populations. Here we analyze the polymorphism of this region in Amerindians from Amazonia, who have a complex demographic history, including recent bottlenecks that are known to reduce genetic variability. Amerindians show high nucleotide diversity (pi = 0.27%) and significantly positive Tajima`s D, and carry haplotypes associated with weak and strong gene expression. To evaluate whether these signatures of balancing selection could be explained by demography, we perform neutrality tests based on empiric and simulated data. The observed Tajima`s D was higher than that of other world populations: higher than that found for 18 noncoding regions of South Amerindians, and higher than 99.6% of simulated genealogies, which assume nonequilibrium conditions. Moreover, comparing Amerindians and Asians, the Fst for CCR5 cis-regulatory region was unusually low, in relation to neutral markers. These findings indicate that, despite their complex demographic history, South Amerindians carry a detectable signature of selection on the CCR5 cis-regulatory region. (C) 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Resumo:
Objectives: The goal of this study was to understand the relationship between economic change (wage labor, retirement, and the Bolsa Familia program) and dietary patterns in the rural Amazon and to determine the extent to which these changes followed the pattern of the nutrition transition. Methods: The study was longitudinal. The weighed-inventory method and economic interviews were used to collect data on dietary intake and household economics in a sample of 30 and 52 women in 2002 and 2009, respectively. Twenty of the women participated in both years and make-up the longitudinal sub-sample. Comparative statistics were used to identify changes in dietary patterns over time and multiple linear regressions were used to explore the relationship between economics, subsistence strategies, and diet. Results: There was a significant decline in kcal (P < 0.01) and carbohydrate (P < 0.01) but no change in protein intake over time in both the larger and smaller, longitudinal subsample. The percent of energy, carbohydrate, protein, and fat purchased increased in the larger and longitudinal samples (P <= 0.02) and there was an increase in refined carbohydrate and processed, fatty-meat consumption over time. The abandonment of manioc gardens was associated with increased dependence on purchased food (P = 0.03) while receipt of the Bolsa Familia was associated with increased protein intake and adequacy (P = 0.02). Conclusions: The dietary changes observed are only in partial agreement with predictions of the nutrition transition literature. The relationship between the economic and diet changes was shaped by the local context which should be considered when implementing CCT programs, like the Bolsa Familia. Am. J. Hum. Biol. 23:458-469, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Limited financial sources and the difficulty in performing complete surveys, allied to the speed of habitat fragmentation and the urgent necessity in select conservation areas, create the necessity of using some methodologies which bypass these problems. One possibility is the use of surrogate taxa that might be used as indicator of others groups richness and even total richness of an area. We investigated if the use of surrogate taxon is useful among seven mammal orders in Amazon. We tested through Pearson`s correlation (Bonferroni`s adjusted) if (1) there was a correlation between richness of total species and some order; (2) there was a significant pair wise correlation between species richness of each order; and (3) the combination of two orders would give better results as a surrogate for the total richness. The correlations found, in general, were positive. It means that the increase in the richness of an order was followed by its increase in another order, as well as in the total species richness. Only Didelphimorphia was significantly correlated with the total species richness. In the pair wise analyses only one assembly, Primates and Artiodactyla, was significantly correlated with total richness. Since indicator species are more effective within taxonomic groups (life-history characteristics are likely to be more different among than within major taxonomic groups), we suggest that an indicator group might be chosen for each one. In this case, for mammals from Amazon, it would be Didelphimorphia. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.