3 resultados para wireless networks

em WestminsterResearch - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adequate user authentication is a persistent problem, particularly with mobile devices, which tend to be highly personal and at the fringes of an organisation's influence. Yet these devices are being used increasingly in various business settings, where they pose a risk to security and privacy, not only from sensitive information they may contain, but also from the means they typically offer to access such information over wireless networks. User authentication is the first line of defence for a mobile device that falls into the hands of an unauthorised user. However, motivating users to enable simple password mechanisms and periodically update their authentication information is difficult at best. This paper examines some of the issues relating to the use of biometrics as a viable method of authentication on mobile wireless devices. It is also a critical analysis of some of the techniques currently employed and where appropriate, suggests novel hybrid ways in which they could be improved or modified. Both biometric technology and wireless setting based constraints that determine the feasibility and the performance of the authentication feature are specified. Some well known biometric technologies are briefly reviewed and their feasibility for wireless and mobile use is reviewed. Furthermore, a number of quantitative and qualitative parameters for evaluation are also presented. Biometric technologies are continuously advancing toward commercial implementation in wireless devices. When carefully designed and implemented, the advantage of biometric authentication arises mainly from increased convenience and coexistent improved security.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a model for intelligent agents (sensors) on a Wireless Sensor Network to guard against energy-drain attacks in an energy-efficient and autonomous manner. This is intended to be achieved via an energy-harvested Wireless Sensor Network using a novel architecture to propagate knowledge to other sensors based on automated reasoning from an attacked sensor.