8 resultados para warranty forecasting
em WestminsterResearch - UK
Resumo:
This paper applies Gaussian estimation methods to continuous time models for modelling overseas visitors into the UK. The use of continuous time modelling is widely used in economics and finance but not in tourism forecasting. Using monthly data for 1986–2010, various continuous time models are estimated and compared to autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models. Dynamic forecasts are obtained over different periods. The empirical results show that the ARIMA model performs very well, but that the constant elasticity of variance (CEV) continuous time model has the lowest root mean squared error (RMSE) over a short period.
Resumo:
This paper provides an empirical study to assess the forecasting performance of a wide range of models for predicting volatility and VaR in the Madrid Stock Exchange. The models performance was measured by using different loss functions and criteria. The results show that FIAPARCH processes capture and forecast more accurately the dynamics of IBEX-35 returns volatility. It is also observed that assuming a heavy-tailed distribution does not improve models ability for predicting volatility. However, when the aim is forecasting VaR, we find evidence of that the Student’s t FIAPARCH outperforms the models it nests the lower the target quantile.
Resumo:
Abstract Purpose The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field. Design/Methodology/approach Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed. Findings This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area. Research limitations/implications The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting. Practical implications This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices. Originality/value The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions.
Resumo:
Besides core project partners, the SCI-BUS project also supported several external user communities in developing and setting up customized science gateways. The focus was on large communities typically represented by other European research projects. However, smaller local efforts with the potential of generalizing the solution to wider communities were also supported. This chapter gives an overview of support activities related to user communities external to the SCI-BUS project. A generic overview of such activities is provided followed by the detailed description of three gateways developed in collaboration with European projects: the agINFRA Science Gateway for Workflows for agricultural research, the VERCE Science Gateway for seismology, and the DRIHM Science Gateway for weather research and forecasting.
Resumo:
In this study we analyse the emerging patterns of regional collaboration for innovation projects in China, using official government statistics of 30 Chinese regions. We propose the use of Ordinal Multidimensional Scaling and Cluster analysis as a robust method to study regional innovation systems. Our results show that regional collaborations amongst organisations can be categorised by means of eight dimensions: public versus private organisational mindset; public versus private resources; innovation capacity versus available infrastructures; innovation input (allocated resources) versus innovation output; knowledge production versus knowledge dissemination; and collaborative capacity versus collaboration output. Collaborations which are aimed to generate innovation fell into 4 categories, those related to highly specialised public research institutions, public universities, private firms and governmental intervention. By comparing the representative cases of regions in terms of these four innovation actors, we propose policy measures for improving regional innovation collaboration within China.
Resumo:
Consumer confidence indices (CCIs) are a closely monitored barometer of countries’ economic health and an informative forecasting tool. Using European and US data, we provide a case study of the two recent stock market meltdowns (the post-dotcom bubble correction of 2000–2002 and the 2007–2009 decline at the beginning of the financial crisis) to contribute to the discussion on their appropriateness as proxies for stock markets’ investor sentiment. Investor sentiment should positively covary with stock market movements (DeLong, Shleifer, Summers, and Waldmann 1990); however, we find that the CCI–stock market relationship is not universally positive.We also do not find support for the information effect documented in the previous literature, but identify a more subtle relationship between consumer expectations about future household finances and stock market fluctuations.
Resumo:
Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.