5 resultados para user interface design

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of perceptual inputs is an emerging area within HCI that suggests a developing Perceptual User Interface (PUI) that may prove advantageous for those involved in mobile serious games and immersive social network environments. Since there are a large variety of input devices, software platforms, possible interactions, and myriad ways to combine all of the above elements in pursuit of a PUI, we propose in this paper a basic experimental framework that will be able to standardize study of the wide range of interactive applications for testing efficacy in learning or information retrieval and also suggest improvements to emerging PUIs by enabling quick iteration. This rapid iteration will start to define a targeted range of interactions that will be intuitive and comfortable as perceptual inputs, and enhance learning and information retention in comparison to traditional GUI systems. The work focuses on the planning of the technical development of two scenarios, and the first steps in developing a framework to evaluate these and other PUIs for efficacy and pedagogy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit  beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit  beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient  digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the  modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP  modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of  modulators topologies, is intended to accelerate the design process and evaluation of  modulators. This design tool is further developed to enable the design, analysis and evaluation of  beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

E-scientists want to run their scientific experiments on Distributed Computing Infrastructures (DCI) to be able to access large pools of resources and services. To run experiments on these infrastructures requires specific expertise that e-scientists may not have. Workflows can hide resources and services as a virtualization layer providing a user interface that e-scientists can use. There are many workflow systems used by research communities but they are not interoperable. To learn a workflow system and create workflows in this workflow system may require significant efforts from e-scientists. Considering these efforts it is not reasonable to expect that research communities will learn new workflow systems if they want to run workflows developed in other workflow systems. The solution is to create workflow interoperability solutions to allow workflow sharing. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed two interoperability solutions to support workflow sharing: Coarse-Grained Interoperability (CGI) and Fine-Grained Interoperability (FGI). The project created the SHIWA Simulation Platform (SSP) to implement the Coarse-Grained Interoperability approach as a production-level service for research communities. The paper describes the CGI approach and how it enables sharing and combining existing workflows into complex applications and run them on Distributed Computing Infrastructures. The paper also outlines the architecture, components and usage scenarios of the simulation platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL