3 resultados para urine retention
em WestminsterResearch - UK
Resumo:
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.
Resumo:
Background: The identification of beverages that promote longer- term fluid retention and maintenance of fluid balance is of real clinical and practical benefit in situations in which free access to fluids is limited or when frequent breaks for urination are not desirable. The postingestion diuretic response is likely to be influenced by several beverage characteristics, including the volume ingested, energy den- sity, electrolyte content, and the presence of diuretic agents. Objective: This study investigated the effects of 13 different com- monly consumed drinks on urine output and fluid balance when ingested in a euhydrated state, with a view to establishing a beverage hydration index (BHI), i.e., the volume of urine produced after drinking expressed relative to a standard treatment (still water) for each beverage. Design: Each subject (n = 72, euhydrated and fasted male subjects) ingested 1 L still water or 1 of 3 other commercially available beverages over a period of 30 min. Urine output was then collected for the subsequent 4 h. The BHI was corrected for the water content of drinks and was calculated as the amount of water retained at 2 h after ingestion relative to that observed after the ingestion of still water. Results: Total urine masses (mean 6 SD) over 4 h were smaller than the still-water control (1337 6 330 g) after an oral rehydration solution (ORS) (1038 6 333 g, P , 0.001), full-fat milk (1052 6 267 g, P , 0.001), and skimmed milk (1049 6 334 g, P , 0.001). Cumulative urine output at 4 h after ingestion of cola, diet cola, hot tea, iced tea, coffee, lager, orange juice, sparkling water, and a sports drink were not different from the response to water ingestion. The mean BHI at 2 h was 1.54 6 0.74 for the ORS, 1.50 6 0.58 for full- fat milk, and 1.58 6 0.60 for skimmed milk. Conclusions: BHI may be a useful measure to identify the short- term hydration potential of different beverages when ingested in a euhydrated state.
Resumo:
This chapter examines the new legal concept of risk retention under EU law for asset-backed securities.