4 resultados para switchable multiwavelength
em WestminsterResearch - UK
Resumo:
A compact highly linear microstrip dual-mode electronically switchable filter is presented. The key characteristics of the dual-mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with NXP pin diode model BAP65-03. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presented for digitally modulated 16 QAM and QPSK signals.
Resumo:
A compact highly linear microstrip dual - mode optically switchable filter and a reconfigurable power amplifier are presented. The key characteristics of the dual - mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with an optical switch, which comprised of a silicon dice acti vated using near infrared light. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presen ted for digitally modulated M - QAM and M - QAM OFDM singals.
Resumo:
This paper presents a magnetically biased graphene based switch for CPW resonator applications. Graphene patches are set in the gap between signal and ground lines, thus obtaining the whole structures act as switchable elements. Graphene was modeled as a general material with appropriate surface conductivity. The presented CPW resonator structure acts like a switch in ON state even for magnetic bias field of around 0.5 T. The simulated S parameters of the CPW resonator structure with different magnetic field biasing are presented.