4 resultados para super-algebra
em WestminsterResearch - UK
Resumo:
Cost-effective semantic description and annotation of shared knowledge resources has always been of great importance for digital libraries and large scale information systems in general. With the emergence of the Social Web and Web 2.0 technologies, a more effective semantic description and annotation, e.g., folksonomies, of digital library contents is envisioned to take place in collaborative and personalised environments. However, there is a lack of foundation and mathematical rigour for coping with contextualised management and retrieval of semantic annotations throughout their evolution as well as diversity in users and user communities. In this paper, we propose an ontological foundation for semantic annotations of digital libraries in terms of flexonomies. The proposed theoretical model relies on a high dimensional space with algebraic operators for contextualised access of semantic tags and annotations. The set of the proposed algebraic operators, however, is an adaptation of the set theoretic operators selection, projection, difference, intersection, union in database theory. To this extent, the proposed model is meant to lay the ontological foundation for a Digital Library 2.0 project in terms of geometric spaces rather than logic (description) based formalisms as a more efficient and scalable solution to the semantic annotation problem in large scale.
Resumo:
The current epidemic of Hepatitis C infection in HIV-positive men who have sex with men is associated with increasing use of recreational drugs. Multiple HCV infections have been reported in haemophiliacs and intravenous drug users. Using ultra-deep sequencing analysis, we present the case of an HIV-positive MSM with evidence of three sequential HCV infections, each occurring during the acute phase of the preceding infection, following risk exposures. We observed rapid replacement of the original strain by the incoming genotype at subsequent time points. The impact of HCV super-infection remains unclear and UDS may provide new insights.
Resumo:
Super-resolution refers to the process of obtaining a high resolution image from one or more low resolution images. In this work, we present a novel method for the super-resolution problem for the limited case, where only one image of low resolution is given as an input. The proposed method is based on statistical learning for inferring the high frequencies regions which helps to distinguish a high resolution image from a low resolution one. These inferences are obtained from the correlation between regions of low and high resolution that come exclusively from the image to be super-resolved, in term of small neighborhoods. The Markov random fields are used as a model to capture the local statistics of high and low resolution data when they are analyzed at different scales and resolutions. Experimental results show the viability of the method.