2 resultados para respiratory insufficiens

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantity of blood arriving at the left side of the heart oscillates throughout the breathing cycle due to the mechanics of breathing. Neurally regulated fluctuations in the length of the heart period act to dampen oscillations of the left ventricular stroke volume entering the aorta. We have reported that stroke volume oscillations but not spectral frequency variability stroke volume measures can be used to estimate the breathing frequency. This study investigated with the same recordings whether heart period oscillations or spectral heart rate variability measures could function as estimators of breathing frequency. Continuous 270 s cardiovascular recordings were obtained from 22 healthy adult volunteers in the supine and upright postures. Breathing was recorded simultaneously. Breathing frequency and heart period oscillation frequency were calculated manually, while heart rate variability spectral maximums were obtained using heart rate variability software. These estimates were compared to the breathing frequency using the Bland–Altman agreement procedure. Estimates were required to be \±10% (95% levels of agreement). The 95% levels of agreement measures for the heart period oscillation frequency (supine: -27.7 to 52.0%, upright: -37.8 to 45.9%) and the heart rate variability spectral maximum estimates (supine: -48.7 to 26.5% and -56.4 to 62.7%, upright: -37.8 to 39.3%) exceeded 10%. Multiple heart period oscillations were observed to occur during breathing cycles. Both respiratory and non-respiratory sinus arrhythmia was observed amongst healthy adults. This observation at least partly explains why heart period parameters and heart rate variability parameters are not reliable estimators of breathing frequency. In determining the validity of spectral heart rate variability measurements we suggest that it is the position of the spectral peaks and not the breathing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.