3 resultados para processus de domestication
em WestminsterResearch - UK
Resumo:
The domestication of plants and animals marks one of the most significant transitions in human, and indeed global, history. Traditionally, study of the domestication process was the exclusive domain of archaeologists and agricultural scientists; today it is an increasingly multidisciplinary enterprise that has come to involve the skills of evolutionary biologists and geneticists. Although the application of new information sources and methodologies has dramatically transformed our ability to study and understand domestication, it has also generated increasingly large and complex datasets, the interpretation of which is not straightforward. In particular, challenges of equifinality, evolutionary variance, and emergence of unexpected or counter-intuitive patterns all face researchers attempting to infer past processes directly from patterns in data. We argue that explicit modeling approaches, drawing upon emerging methodologies in statistics and population genetics, provide a powerful means of addressing these limitations. Modeling also offers an approach to analyzing datasets that avoids conclusions steered by implicit biases, and makes possible the formal integration of different data types. Here we outline some of the modeling approaches most relevant to current problems in domestication research, and demonstrate the ways in which simulation modeling is beginning to reshape our understanding of the domestication process.
Resumo:
Routes of migration and exchange are important factors in the debate about how the Neolithic transition spread into Europe. Studying the genetic diversity of livestock can help in tracing back some of these past events. Notably, domestic goat (Capra hircus) did not have any wild progenitors (Capra aegagrus) in Europe before their arrival from the Near East. Studies of mitochondrial DNA have shown that the diversity in European domesticated goats is a subset of that in the wild, underlining the ancestral relationship between both populations. Additionally, an ancient DNA study on Neolithic goat remains has indicated that a high level of genetic diversity was already present early in the Neolithic in northwestern Mediterranean sites. We used coalescent simulations and approximate Bayesian computation, conditioned on patterns of modern and ancient mitochondrial DNA diversity in domesticated and wild goats, to test a series of simplified models of the goat domestication process. Specifically, we ask if domestic goats descend from populations that were distinct prior to domestication. Although the models we present require further analyses, preliminary results indicate that wild and domestic goats are more likely to descend from a single ancestral wild population that was managed 11,500 years before present, and that serial founding events characterise the spread of Capra hircus into Europe.