2 resultados para predictive regression model

em WestminsterResearch - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Safeguarding organizations against opportunism and severe deception in computer-mediated communication (CMC) presents a major challenge to CIOs and IT managers. New insights into linguistic cues of deception derive from the speech acts innate to CMC. Applying automated text analysis to archival email exchanges in a CMC system as part of a reward program, we assess the ability of word use (micro-level), message development (macro-level), and intertextual exchange cues (meta-level) to detect severe deception by business partners. We empirically assess the predictive ability of our framework using an ordinal multilevel regression model. Results indicate that deceivers minimize the use of referencing and self-deprecation but include more superfluous descriptions and flattery. Deceitful channel partners also over structure their arguments and rapidly mimic the linguistic style of the account manager across dyadic e-mail exchanges. Thanks to its diagnostic value, the proposed framework can support firms’ decision-making and guide compliance monitoring system development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to develop, test and benchmark a framework and a predictive risk model for hospital emergency readmission within 12 months. We performed the development using routinely collected Hospital Episode Statistics data covering inpatient hospital admissions in England. Three different timeframes were used for training, testing and benchmarking: 1999 to 2004, 2000 to 2005 and 2004 to 2009 financial years. Each timeframe includes 20% of all inpatients admitted within the trigger year. The comparisons were made using positive predictive value, sensitivity and specificity for different risk cut-offs, risk bands and top risk segments, together with the receiver operating characteristic curve. The constructed Bayes Point Machine using this feature selection framework produces a risk probability for each admitted patient, and it was validated for different timeframes, sub-populations and cut-off points. At risk cut-off of 50%, the positive predictive value was 69.3% to 73.7%, the specificity was 88.0% to 88.9% and sensitivity was 44.5% to 46.3% across different timeframes. Also, the area under the receiver operating characteristic curve was 73.0% to 74.3%. The developed framework and model performed considerably better than existing modelling approaches with high precision and moderate sensitivity.