4 resultados para predictive accuracy
em WestminsterResearch - UK
Resumo:
Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.
Resumo:
Multi-parametric magnetic resonance imaging (mp-MRI) has become an increasingly important method for detecting and treating prostate cancer. Transrectal ultrasound (TRUS) is the most commonly used method for guiding prostate needle biopsy and remains the gold standard for diagnosis of prostate cancer. MRI-to-TRUS image reg- istration is an important technology for enabling computer-assisted targeting of the majority of prostate lesions that are visible in MRI but not independently distinguishable in TRUS images. The aim of this study was to estimate the needle placement accuracy of an image guidance system (SmartTargetÒ), developed by our research group, using a surgical training phantom.
Resumo:
Indices of post awakening cortisol secretion (PACS), include the rise in cortisol(cortisol awakening response: CAR) and overall cortisol concentrations (e.g. area under the curve with reference to ground: AUCg) in the first 30—45 min. Both are commonly investigated in relation to psychosocial variables. Although sampling within the domestic setting is ecologically valid, participant non-adherence to the required timing protocol results in erroneous measurement of PACS and this may explain discrepancies in the literature linking these measures to trait well-being (TWB). We have previously shown that delays of little over 5 min(between awakening and the start of sampling) to result in erroneous CAR estimates. In this study, we report for the first time on the negative impact of sample timing inaccuracy (verified by electronic-monitoring) on the efficacy to detect significant relationships between PACS and TWB when measured in the domestic setting.Healthy females (N = 49, 20.5 ± 2.8 years) selected for differences in TWB collected saliva samples (S1—4) on 4 days at 0, 15, 30, 45 min post awakening, to determine PACS. Adherence to the sampling protocol was objectively monitored using a combination of electronic estimates of awakening (actigraphy) and sampling times (track caps).Relationships between PACS and TWB were found to depend on sample timing accuracy. Lower TWB was associated with higher post awakening cortisol AUCg in proportion to the mean sample timing accuracy (p < .005). There was no association between TWB and the CAR even taking into account sample timing accuracy. These results highlight the importance of careful electronic monitoring of participant adherence for measurement of PACS in the domestic setting. Mean sample timing inaccuracy, mainly associated with delays of >5 min between awakening and collection of sample 1 (median = 8 min delay), negatively impacts on the sensitivity of analysis to detect associations between PACS and TWB.
Resumo:
This paper demonstrates nonlinear phase filtering effects on GNSS receiver accuracy. Using a nonlinear phase filter in a GNSS receiver can change the pseudorange estimation up to 250 metres which introduces an error in the overall positioning calculation. Paper shows the study of the nonlinear phase filtering effects on the pseudorange estimation and demonstrates how it can be compensated with minimal hardware usage.