6 resultados para parkin
em WestminsterResearch - UK
Resumo:
The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flex- ible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ven- tral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple dis- tinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated.
Resumo:
The use of non-invasive brain stimulation is widespread in studies of human cognitive neuroscience. This has led to some genuine advances in understanding perception and cognition, and has raised some hopes of applying the knowledge in clinical contexts. There are now several forms of stimulation, the ability to combine these with other methods, and ethical questions that are special to brain stimulation. In this Primer, we aim to give the users of these methods a starting point and perspective from which to view the key questions and usefulness of the different forms of non-invasive brain stimulation. We have done so by taking a critical view of recent highlights in the literature, selected case studies to illustrate the elements necessary and sufficient for good experiments, and pointed to questions and findings that can only be addressed using interference methods
Resumo:
A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support “relational integration” (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could reflect the recruitment of additional “domain-general” resources when processing more difficult problems in general as opposed to RI specifi- cally. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain- general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically. Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.
Resumo:
Ashton and colleagues concede in their response (Ashton, Lee, & Visser, in this issue), that neuroimaging methods provide a relatively unambiguous measure of the levels to which cognitive tasks co-recruit dif- ferent functional brain networks (task mixing). It is also evident from their response that they now accept that task mixing differs from the blended models of the classic literature. However, they still have not grasped how the neuroimaging data can help to constrain models of the neural basis of higher order ‘g’. Specifically, they claim that our analyses are invalid as we assume that functional networks have uncorrelated capacities. They use the simple analogy of a set of exercises that recruit multiple muscle groups to varying extents and highlight the fact that individual differences in strength may correlate across muscle groups. Contrary to their claim, we did not assume in the original article (Hampshire, High- field, Parkin, & Owen, 2012) that functional networks had uncorrelated capacities; instead, the analyses were specifically designed to estimate the scale of those correlations, which we referred to as spatially ‘diffuse’ factors
Resumo:
It is now well established that some patients who are diagnosed as being in a vegetative state or a minimally conscious state show reliable signs of volition that may only be detected by measuring neural responses. A pertinent question is whether these patients are also capable of logical thought. Here, we validate an fMRI paradigm that can detect the neural fingerprint of reasoning processes and moreover, can confirm whether a participant derives logical answers. We demonstrate the efficacy of this approach in a physically non-communicative patient who had been shown to engage in mental imagery in response to simple audi- tory instructions. Our results demonstrate that this individual retains a remarkable capacity for higher cogni- tion, engaging in the reasoning task and deducing logical answers. We suggest that this approach is suitable for detecting residual reasoning ability using neural responses and could readily be adapted to assess other aspects of cognition.
Resumo:
What makes one person more intellectually able than another? Can the entire distribution of human intelligence be accounted for by just one general factor? Is intelligence supported by a single neural system? Here, we provide a perspective on human intelligence that takes into account how general abilities or ‘‘factors’’ reflect the functional organiza- tion of the brain. By comparing factor models of individual differences in performance with factor models of brain functional organization, we demon- strate that different components of intelligence have their analogs in distinct brain networks. Using simulations based on neuroimaging data, we show that the higher-order factor ‘‘g’’ is accounted for by cognitive tasks corecruiting multiple networks. Finally, we confirm the independence of these com- ponents of intelligence by dissociating them using questionnaire variables. We propose that intelli- gence is an emergent property of anatomically distinct cognitive systems, each of which has its own capacity.