4 resultados para optimal and suboptimal quality RNA

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment is a major sink for heavy metals in river, and poses significant risks not only to river quality but also to aquatic and benthic organisms. At present in the UK, there are no mandatory sediment quality standards. This is partly due to insufficient toxicity data but also due to problems with identification of appropriate sediment monitoring and analytical techniques. The aim of this research was to examine the sampling different river sediment compartments in order to monitor compliance with any future UK sediment environmental quality standards (EQS). The significance of sediment physical and chemical characteristics on sampling and analysis was also determined. The Ravensbourne River, a tributary of the River Thames located in the highly urbanised South Eastern area of London was used for this study. Sediment was collected from the bed using the Van Veer grab, the bank using hand trowel, and from the water column (suspended sediment) using the time integrated suspended tube sampler between the period of July 2010 and December, 2011. The result for the total metal extraction carried out using aqua regia found that there were no significant differences in the metal concentrations retained in the different compartments by the <63μm sediment fraction but there were differences between the 63μm-2mm fractions of the bed and bank. The metal concentration in the bed, bank and suspended sediment exceeded the draft UK sediment quality guidelines. Sequential extraction was also carried out to determine metal speciation in each sediment compartment using the Maiz et al. (1997) and Tessier et al. (1979) methods. The Maiz et al. (1997) found over 80% of the metals in each sediment compartment were not bioavailable, while Tessier et al. (1979) method found most of the metals to be associated with the Fe/Mn and the residual phase. The bed sediment compartment and the <2mm (<63μm + 63μm-2mm) fraction appears to be the most suitable sediment sample for sediment monitoring from this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adulteration of Ginkgo products sold as unregistered supplements within the very large market of Ginkgo products (reputedly £650 million annually) through the post-extraction addition of cheaper (e.g. buckwheat derived) rutin is suspected to allow sub-standard products to appear satisfactory to third parties, e.g. secondary buyers along the value chain or any regulatory authorities. This study was therefore carried out to identify products that did not conform to their label specification and may have been actively adulterated to enable access to the global markets. 500 MHz Bruker NMR spectroscopy instrumentation combined with Topspin version 3.2 and a CAMAG HPTLC system (HPTLC Association for the analysis of Ginkgo biloba leaf) were used to generate NMR spectra (focusing on the 6–8 ppm region for analysis) and chromatograms, respectively. Out of the 35 samples of Ginkgo biloba analysed, 33 were found to contain elevated levels of rutin and/or quercetin, or low levels of Ginkgo metabolites when compared with the reference samples. Samples with disproportional levels of rutin or quercetin compared with other gingko metabolites are likely to be adulterated, either by accident or intentionally, and those samples with low or non-existent gingko metabolite content may have been produced using poor extraction techniques. Only two of the investigated samples were found to match with the High-Performance Thin-Layer Chromatography (HPTLC) fingerprint of the selected reference material. All others deviated significantly. One product contained a 5-hydroxytryptophan derivative, which is not a natural constituent of Ginkgo biloba. Overall, these examples either suggest a poor extraction technique or deliberate adulteration along the value chain. Investigating the ratio of different flavonoids e.g. quercetin and kaempferol using NMR spectroscopy and HPTLC will provide further evidence as to the degree and kind of adulteration of Gingko supplements. From a consumer perspective the equivalence in identity and overall quality of the products needs to be guaranteed for supplements too and not only for products produced according to a quality standard or pharmacopoeial monograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What is the best luminance contrast weighting-function for image quality optimization? Traditionally measured contrast sensitivity functions (CSFs), have been often used as weighting-functions in image quality and difference metrics. Such weightings have been shown to result in increased sharpness and perceived quality of test images. We suggest contextual CSFs (cCSFs) and contextual discrimination functions (cVPFs) should provide bases for further improvement, since these are directly measured from pictorial scenes, modeling threshold and suprathreshold sensitivities within the context of complex masking information. Image quality assessment is understood to require detection and discrimination of masked signals, making contextual sensitivity and discrimination functions directly relevant. In this investigation, test images are weighted with a traditional CSF, cCSF, cVPF and a constant function. Controlled mutations of these functions are also applied as weighting-functions, seeking the optimal spatial frequency band weighting for quality optimization. Image quality, sharpness and naturalness are then assessed in two-alternative forced-choice psychophysical tests. We show that maximal quality for our test images, results from cCSFs and cVPFs, mutated to boost contrast in the higher visible frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid developments in display technologies, digital printing, imaging sensors, image processing and image transmission are providing new possibilities for creating and conveying visual content. In an age in which images and video are ubiquitous and where mobile, satellite, and three-dimensional (3-D) imaging have become ordinary experiences, quantification of the performance of modern imaging systems requires appropriate approaches. At the end of the imaging chain, a human observer must decide whether images and video are of a satisfactory visual quality. Hence the measurement and modeling of perceived image quality is of crucial importance, not only in visual arts and commercial applications but also in scientific and entertainment environments. Advances in our understanding of the human visual system offer new possibilities for creating visually superior imaging systems and promise more accurate modeling of image quality. As a result, there is a profusion of new research on imaging performance and perceived quality.