3 resultados para obstacles
em WestminsterResearch - UK
Resumo:
For two reasons, our capacity for systematic comparison of innovative participatory democratic processes remains limited. First, the category of participatory democratic innovations remains relatively vague when compared to more traditional democratic institutions and practices. Second, until recently there existed no large-sample databases that captured relevant variables in the practice of democratic innovation. The lone exception to these patterns is the Participedia database, located online. Participedia is well placed to respond to the two obstacles to systematic comparative research on democratic innovation. First, its crowdsourced data collection strategy means that many of the cases on the platform are not well known and have not been the subject of sustained academic analysis. Second, the data captured in the articles provides the basis for systematic comparative analysis of democratic innovations both within type (e.g., participatory budgeting, mini-publics) and across types. The platform allows for systematic content analysis of text descriptions and/or statistical analysis of the datasets generated from the structured data fields. This article describes the data about innovative participatory democratic processes available from Participedia, and furnishes examples of the kinds of quantitative and qualitative insights about those processes that Participedia enables.
Resumo:
Waterways are one of the oldest systems for the transportation of cargo and continue to play a vital role in the economies of some countries. Due to societal change, climate change and the ageing of assets, the conditions influencing the effective functioning of these systems seem to be changing. These changing conditions require measures to renew, adapt or renovate these waterway systems. However, measures with the sole aim of improving navigation conditions have encountered resistance, as the general public, and stakeholders in particular, value these waters in many more ways than navigation alone. Therefore, a more inclusive, integrated approach is required, rather than a sectoral one. Addressing these contemporary challenges requires a shift in the traditional waterway authorities' regimes. The aim of this study is to identify elements in the institutional setting where obstacles and opportunities for a more inclusive approach can be found. Two major waterway systems, the American and the Dutch, have been analyzed using the Institutional Analysis and Development framework to reveal those obstacles and opportunities. The results show that horizontal coordination and a low pay-off for an inclusive approach is particularly problematic. The American case also reveals a promising aspect – mandatory local co-funding for federal navigation projects acts as a stimulus for broad stakeholder involvement. Improving horizontal coordination and seizing opportunities for multifunctional development can open pathways to optimize the value of waterway systems for society.
Resumo:
Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such asMRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat–muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variationwas 1.4%for IAAT and 1.2%for ASAT, the intra-observer correlationwas 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.