4 resultados para multimedia video
em WestminsterResearch - UK
Resumo:
This practice-based PhD is comprised of two interrelated elements: (i) ‘(un)childhood’, a 53’ video-essay shown on two screens; and (ii) a 58286 word written thesis. The project, which is contextualised within the tradition of artists working with their own children on time-based art projects, explores a new approach to timebased artistic work about childhood. While Stan Brakhage (1933-2003), Ernie Gher (1943-), Erik Bullot (1963-) and Mary Kelly (1941-) all documented, photographed and filmed their children over a period of years to produce art projects (experimental films and a time-based installation), these projects were implicitly underpinned by a construction of childhood in which children, shown as they grow, represent the abstract primitive subject. The current project challenges the convention of representing children entirely from the adult’s point of view, as aesthetic objects without a voice, as well as through the artist’s chronological approach to time. Instead, this project focuses on the relational joining of the child’s and adult’s points of view. The artist worked on a video project with her own son over a four-and-a-half year period (between the ages of 5 and 10) through which she developed her ‘relational video-making’ methodology. The video-essay (un)childhood performs the relational voices of childhood as resulting from the verbal interactions of both children and adults. The non-chronological nature of(un)childhood offers an alternative to the linear-temporal approach to the representation of childhood. Through montage and a number of literal allusions to time in its dialogue, (un)childhood performs the relational times of childhood by combining children’s lives in the present with the temporal dimensions that have traditionally constructed childhood: past, future and timeless.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods. This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state–of–the–art registration methodologies used in a variety of targeted applications.
Resumo:
Assessing the subjective quality of processed images through an objective quality metric is a key issue in multimedia processing and transmission. In some scenarios, it is also important to evaluate the quality of the received images with minimal reference to the transmitted ones. For instance, for closed-loop optimisation of image and video transmission, the quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original images - prior to compression and transmission - are not usually available at the receiver side, and it is important to rely at the receiver side on an objective quality metric that does not need reference or needs minimal reference to the original images. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art reduced reference metric. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.
Resumo:
Rapid developments in display technologies, digital printing, imaging sensors, image processing and image transmission are providing new possibilities for creating and conveying visual content. In an age in which images and video are ubiquitous and where mobile, satellite, and three-dimensional (3-D) imaging have become ordinary experiences, quantification of the performance of modern imaging systems requires appropriate approaches. At the end of the imaging chain, a human observer must decide whether images and video are of a satisfactory visual quality. Hence the measurement and modeling of perceived image quality is of crucial importance, not only in visual arts and commercial applications but also in scientific and entertainment environments. Advances in our understanding of the human visual system offer new possibilities for creating visually superior imaging systems and promise more accurate modeling of image quality. As a result, there is a profusion of new research on imaging performance and perceived quality.