2 resultados para moderate intensity

em WestminsterResearch - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context Randomised controlled trials in non-alcoholic fatty liver disease (NAFLD) have shown that regular exercise, even without calorie restriction, reduces liver steatosis. A previous study has shown that 16 weeks supervised exercise training in NAFLD did not affect total VLDL kinetics. Objective To determine the effect of exercise training on intrahepatocellular fat (IHCL) and the kinetics of large triglyceride-(TG)-rich VLDL1 and smaller denser VLDL2 which has a lower TG content. Design A 16 week randomised controlled trial. Patients 27 sedentary patients with NAFLD. Intervention Supervised exercise with moderate-intensity aerobic exercise or conventional lifestyle advice (control). Main outcome Very low density lipoprotein1 (VLDL1) and VLDL2-TG and apolipoproteinB (apoB) kinetics investigated using stable isotopes before and after the intervention. Results In the exercise group VO2max increased by 31±6% (mean±SEM) and IHCL decreased from 19.6% (14.8, 30.0) to 8.9% (5.4, 17.3) (median (IQR)) with no significant change in VO2max or IHCL in the control group (change between groups p<0.001 and p=0.02, respectively). Exercise training increased VLDL1-TG and apoB fractional catabolic rates, a measure of clearance, (change between groups p=0.02 and p=0.01, respectively), and VLDL1-apoB production rate (change between groups p=0.006), with no change in VLDL1 -TG production rate. Plasma TG did not change in either group. Conclusion An increased clearance of VLDL1 may contribute to the significant decrease in liver fat following 16 weeks of exercise in NAFLD. A longer duration or higher intensity exercise interventions may be needed to lower plasma TG and VLDL production rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeine users have been encouraged to consume caffeine regularly to maintain their caffeine tolerance and so avoid caffeine’s acute pressor effects. In controlled conditions complete caffeine tolerance to intervention doses of 250 mg develops rapidly following several days of caffeine ingestion, nevertheless, complete tolerance is not evident for lower intervention doses. Similarly complete caffeine tolerance to 250 mg intervention doses has been demonstrated in habitual coffee and tea drinkers’ but for lower intervention doses complete tolerance is not evident. This study investigated a group of habitual caffeine users following their self-determined consumption pattern involving two to six servings daily. Cardiovascular responses following the ingestion of low to moderate amounts caffeine (67, 133 and 200 mg) were compared with placebo in a double-blind, randomised design without caffeine abstinence. Pre-intervention and post-intervention (30 and 60 min) 90 s continuous cardiovascular recordings were obtained with the Finometer in both the supine and upright postures. Participants were 12 healthy habitual coffee and tea drinkers (10 female, mean age 36). Doses of 67 and 133 mg increased systolic pressure in both postures while in the upright posture diastolic pressure and aortic impedance increased while arterial compliance decreased. These vascular changes were larger upright than supine for 133 mg caffeine. Additionally 67 mg caffeine increased dp/dt and indexed peripheral resistance in the upright posture. For 200 mg caffeine there was complete caffeine tolerance. Cardiovascular responses to caffeine appear to be associated with the size of the intervention dose. Habitual tea and coffee drinking does not generate complete tolerance to caffeine as has been previously suggested. Both the type and the extent of caffeine induced cardiovascular changes were influenced by posture.