3 resultados para modeling and simulation
em WestminsterResearch - UK
Resumo:
Abstract Purpose The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field. Design/Methodology/approach Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed. Findings This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area. Research limitations/implications The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting. Practical implications This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices. Originality/value The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions.
Resumo:
Researchers want to analyse Health Care data which may requires large pools of compute and data resources. To have them they need access to Distributed Computing Infrastructures (DCI). To use them it requires expertise which researchers may not have. Workflows can hide infrastructures. There are many workflow systems but they are not interoperable. To learn a workflow system and create workflows in a workflow system may require significant effort. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows of other workflow systems. As a result, the lack of interoperability prevents workflow sharing and a vast amount of research efforts is wasted. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed the Coarse-Grained Interoperability (CGI) to enable workflow sharing. The project created the SHIWA Simulation Platform (SSP) to support CGI as a production-level service. The paper describes how the CGI approach can be used for analysis and simulation in Health Care.