5 resultados para measured elastic and quasi-elastic sigma(theta) using silicon barrier detectors
em WestminsterResearch - UK
Resumo:
The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.
Concurrent noise-shaping for multiple narrow-band single-loop and multi-stage sigma-delta modulators
Resumo:
There is still a lack of effective paradigms and tools for analysing and discovering the contents and relationships of project knowledge contexts in the field of project management. In this paper, a new framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps under big data environments is proposed and developed. The conceptual paradigm, theoretical underpinning, extended topic model, and illustration examples of the ontology model for project knowledge maps are presented, with further research work envisaged.
Resumo:
This work introduces joint power amplifier (PA) and I/Q modulator modelling and compensation for LongTerm Evolution (LTE) transmitters using artificial neural networks (ANNs). The proposed solution util-izes a powerful nonlinear autoregressive with exogenous inputs (NARX) ANN architecture, which yieldsnoticeable results for high peak to average power ratio (PAPR) LTE signals. Given the ANNs learning capa-bilities, this one-step solution, which includes the mitigation of both PA nonlinearity and I/Q modulatorimpairments, is both accurate and adaptable