1 resultado para machine learning, decision tree, concept drift, ensemble learning, classication, random forest
em WestminsterResearch - UK
Filtro por publicador
- Repository Napier (2)
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (8)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (23)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (12)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (8)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (110)
- CentAUR: Central Archive University of Reading - UK (9)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (16)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (52)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (172)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (28)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (1)
- University of Washington (13)
- WestminsterResearch - UK (1)
Resumo:
Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.