4 resultados para low pass filter (LPF)

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is on the use and performance of M-path polyphase Infinite Impulse Response (IIR) filters for channelisation, conventionally where Finite Impulse Response (FIR) filters are preferred. This paper specifically focuses on the Discrete Fourier Transform (DFT) modulated filter banks, which are known to be an efficient choice for channelisation in communication systems. In this paper, the low-pass prototype filter for the DFT filter bank has been implemented using an M-path polyphase IIR filter and we show that the spikes present at the stopband can be avoided by making use of the guardbands between narrowband channels. It will be shown that the channelisation performance will not be affected when polyphase IIR filters are employed instead of their counterparts derived from FIR prototype filters. Detailed complexity and performance analysis of the proposed use will be given in this article.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a low complexity high efficiency decimation filter which can be employed in EletroCardioGram (ECG) acquisition systems. The decimation filter with a decimation ratio of 128 works along with a third order sigma delta modulator. It is designed in four stages to reduce cost and power consumption. The work reported here provides an efficient approach for the decimation process for high resolution biomedical data conversion applications by employing low complexity two-path all-pass based decimation filters. The performance of the proposed decimation chain was validated by using the MIT-BIH arrhythmia database and comparative simulations were conducted with the state of the art.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports on a Field Programmable Gate Array (FPGA) implementation as well as prototyping for real-time testing of a low complexity high efficiency decimation filter processor which is deployed in conjunction with a custom built low-power jitter insensitive Continuous Time (CT) Sigma-Delta (Σ-Δ) Modulator to measure and assess its performance. The CT Σ-Δ modulator/decimation filter cascade can be used in integrated all-digital microphone interfaces for a variety of applications including mobile phone handsets, wireless handsets as well as other applications requiring all-digital microphones. The work reported here concentrates on the design and implementation as well as prototyping on a Xilinx Spartan 3 FPGA development system and real-time testing of the decimation processing part deploying All-Pass based structures to process the bit stream coming from CT Σ-Δ modulator hence measuring in real-time and fully assessing the modulator's performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.