4 resultados para lange termijn strategieën

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma membrane-derived vesicles (PMVs) or microparticles are vesicles (0.1–1 μm in diameter) released from the plasma membrane of all blood cell types under a variety of biochemical and pathological conditions. PMVs contain cytoskeletal elements and some surface markers from the parent cell but lack a nucleus and are unable to synthesise macromolecules. They are also defined on the basis that in most cases PMVs express varying amounts of the cytosolic leaflet lipid phosphatidylserine, which is externalised during activation on their surface. This marks the PMV as a biologically distinct entity from that of its parent cell, despite containing surface markers from the original cell, and also explains its role in events such as phagocytosis and thrombosis. There is currently a large amount of variation between investigators with regard to the pre-analytical steps employed in isolating red cell PMVs or RPMVs (which are slightly smaller than most PMVs), with key differences being centrifugation and sample storage conditions, which often leads to result variability. Unfortunately, standardization of preparation and detection methods has not yet been achieved. This review highlights and critically discusses the variables contributing to differences in results obtained by investigators, bringing to light numerous studies of which RPMVs have been analysed but have not yet been the subject of a review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microvesicles are released from cell surfaces constitutively during early apoptosis or upon activation with various stimuli including sublytic membrane attack complex (MAC). This study shows that an alternating current, pulsed, extremely low-frequency electromagnetic field (0.3 μT at 10 Hz, 6 V AC) induced transient plasma membrane damage that allowed calcium influx. This in turn caused a release of stimulated microvesicles (sMV). When extracellular calcium was chelated with EGTA, sMV biogenesis initiated by ELFMF was markedly reduced and the reduction was less than when the stimulation was the deposition of sublytic MAC. This suggested that pulsed ELFMF resulted in transcellular membrane pores causing organelles to leak additional calcium into the cytoplasm (which EGTA would not chelate) which itself can lead to sMV release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.