4 resultados para human wildlife interactions
em WestminsterResearch - UK
Resumo:
Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier.
Resumo:
The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the CASINO (Community And Systems-level INteractive Optimization) toolbox, a comprehensive computational platform for analysis of microbial communities through metabolic modeling. We first validated the toolbox by simulating and testing the performance of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention.
Resumo:
This presentation focuses on methods for the evaluation of complex policies. In particular, it focuses on evaluating interactions between policies and the extent to which two or more interacting policies mutually reinforce or hinder one another, in the area of environmental sustainability. Environmental sustainability is increasingly gaining recognition as a complex policy area, requiring a more systemic perspective and approach (e.g. European Commission, 2011). Current trends in human levels of resource consumption are unsustainable, and single solutions which target isolated issues independently of the broader context have so far fallen short. Instead there is a growing call among both academics and policy practitioners for systemic change which acknowledges and engages with the complex interactions, barriers and opportunities across the different actors, sectors, and drivers of production and consumption. Policy mixes, and the combination and ordering of policies within, therefore become an important focus for those aspiring to design and manage transitions to sustainability. To this end, we need a better understanding of the interactions, synergies and conflicts between policies (Cunningham et al., 2013; Geels, 2014). As a contribution to this emerging field of research and to inform its next steps, I present a review on what methods are available to try to quantify the impacts of complex policy interactions, since there is no established method among practitioners, and I explore the merits or value of such attempts. The presentation builds on key works in the field of complexity science (e.g. Anderson, 1972), revisiting and combining these with more recent contributions in the emerging field of policy and complex systems, and evaluation (e.g. Johnstone et al., 2010). With a coalition of UK Government departments, agencies and Research Councils soon to announce the launch of a new internationally-leading centre to pioneer, test and promote innovative and inclusive methods for policy evaluation across the energy-environment-food nexus, the contribution is particularly timely.
Resumo:
In early atherosclerosis the frequency of activated monocytes in the peripheral circulation is amplified, and migration of monocytes into the walls of the aorta and large arteries is increased, due partly to de novo expression or activation of monocyte adhesion molecules. Although there is increasing evidence that CMRs (chylomicron remnants) are strongly atherogenic, the outcomes of interactions between blood monocytes and circulating CMRs are not known. Here, we have studied the effects of CRLPs (CMR-like particles) on THP-1 human monocyte oxidative burst. The particles induced a significant increase in reactive oxygen species within 1 h, which persisted for 24 h. We suggest that monocyte–CMR interactions may be important in early atherosclerosis when many activated monocytes are found in susceptible areas of the artery wall.