3 resultados para high performance
em WestminsterResearch - UK
Resumo:
This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.
Resumo:
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.
Resumo:
Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.