3 resultados para flight optimisation
em WestminsterResearch - UK
Resumo:
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.
Resumo:
Background: Parenteral nutrition is central to the care of very immature infants. Current international recommendations favor higher amino acid intakes and fish oil–containing lipid emulsions. Objective: The aim of this trial was to compare 1) the effects of high [immediate recommended daily intake (Imm-RDI)] and low [incremental introduction of amino acids (Inc-AAs)] parenteral amino acid delivery within 24 h of birth on body composition and 2) the effect of a multicomponent lipid emulsion containing 30% soybean oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (SMOF) with that of soybean oil (SO)-based lipid emulsion on intrahepatocellular lipid (IHCL) content. Design: We conducted a 2-by-2 factorial, double-blind, multicenter randomized controlled trial. Results: We randomly assigned 168 infants born at ,31 wk of gestation. We evaluated outcomes at term in 133 infants. There were no significant differences between Imm-RDI and Inc-AA groups for nonadipose mass [adjusted mean difference: 1.0 g (95% CI: 2108, 111 g; P = 0.98)] or between SMOF and SO groups for IHCL [adjusted mean SMOF:SO ratio: 1.1 (95% CI: 0.8, 1.6; P = 0.58]. SMOF does not affect IHCL content. There was a significant interaction (P = 0.05) between the 2 interventions for nonadipose mass. There were no significant interactions between group differences for either primary outcome measure after adjusting for additional confounders. Imm-RDI infants were more likely than Inc-AA infants to have blood urea nitrogen concentrations .7 mmol/L or .10 mmol/L, respectively (75% compared with 49%, P , 0.01; 49% compared with 18%, P , 0.01). Head circumference at term was smaller in the Imm-RDI group [mean difference: 20.8 cm (95% CI: 21.5, 20.1 cm; P = 0.02)]. There were no significant differences in any prespecified secondary outcomes, including adiposity, liver function tests, incidence of conjugated hyperbilirubinemia, weight, length, mortality, and brain volumes. Conclusion: Imm-RDI of parenteral amino acids does not benefit body composition or growth to term and may be harmful. This trial was registered at www.isrctn.com as ISRCTN29665319 and at eudract.ema.europa.eu as EudraCT 2009-016731-34.