3 resultados para computer vision face recognition detection voice recognition sistemi biometrici iOS
em WestminsterResearch - UK
Resumo:
The police use both subjective (i.e. police staff) and automated (e.g. face recognition systems) methods for the completion of visual tasks (e.g person identification). Image quality for police tasks has been defined as the image usefulness, or image suitability of the visual material to satisfy a visual task. It is not necessarily affected by any artefact that may affect the visual image quality (i.e. decrease fidelity), as long as these artefacts do not affect the relevant useful information for the task. The capture of useful information will be affected by the unconstrained conditions commonly encountered by CCTV systems such as variations in illumination and high compression levels. The main aim of this thesis is to investigate aspects of image quality and video compression that may affect the completion of police visual tasks/applications with respect to CCTV imagery. This is accomplished by investigating 3 specific police areas/tasks utilising: 1) the human visual system (HVS) for a face recognition task, 2) automated face recognition systems, and 3) automated human detection systems. These systems (HVS and automated) were assessed with defined scene content properties, and video compression, i.e. H.264/MPEG-4 AVC. The performance of imaging systems/processes (e.g. subjective investigations, performance of compression algorithms) are affected by scene content properties. No other investigation has been identified that takes into consideration scene content properties to the same extend. Results have shown that the HVS is more sensitive to compression effects in comparison to the automated systems. In automated face recognition systems, `mixed lightness' scenes were the most affected and `low lightness' scenes were the least affected by compression. In contrast the HVS for the face recognition task, `low lightness' scenes were the most affected and `medium lightness' scenes the least affected. For the automated human detection systems, `close distance' and `run approach' are some of the most commonly affected scenes. Findings have the potential to broaden the methods used for testing imaging systems for security applications.
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.