2 resultados para computation
em WestminsterResearch - UK
Resumo:
In this paper, we describe a decentralized privacy-preserving protocol for securely casting trust ratings in distributed reputation systems. Our protocol allows n participants to cast their votes in a way that preserves the privacy of individual values against both internal and external attacks. The protocol is coupled with an extensive theoretical analysis in which we formally prove that our protocol is resistant to collusion against as many as n-1 corrupted nodes in the semi-honest model. The behavior of our protocol is tested in a real P2P network by measuring its communication delay and processing overhead. The experimental results uncover the advantages of our protocol over previous works in the area; without sacrificing security, our decentralized protocol is shown to be almost one order of magnitude faster than the previous best protocol for providing anonymous feedback.
Resumo:
Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.