2 resultados para acid treatment
em WestminsterResearch - UK
Resumo:
The use of triple-therapy, pegylated-interferon, ribavirin and either of the first generation hepatitis C virus (HCV) protease inhibitors telaprevir or boceprevir, is the new standard of care for treating genotype 1 chronic HCV. Clinical trials have shown response rates of around 70–80%, but there is limited data from the use of this combination outside this setting. Through an expanded access programme, we treated 59 patients, treatment naïve and experienced, with triple therapy. Baseline factors predicting treatment response or failure during triple therapy phase were identified in 58 patients. Thirty seven (63.8%) of 58 patients had undetectable HCV RNA 12 weeks after the end of treatment. Genotype 1a (p = 0.053), null-response to previous treatment (p = 0.034), the rate of viral load decline after 12 weeks of previous interferon-based treatment (p = 0.033) were all associated with triple-therapy failure. The most common cause of on-treatment failure for telaprevir-based regimens was the development of resistance-associated variants (RAVs) at amino acids 36 and/or 155 of HCV protease (p = 0.027) whereas in boceprevir-based regimens mutations at amino acid 54 were significant (p = 0.015). SVR12 rates approaching 64% were achieved using triple therapy outside the clinical trial setting, in a patient cohort that included cirrhotics.
Resumo:
Acetate is a short chain fatty acid produced as a result of fermentation of ingested fibers by the gut microbiota. While it has been shown to reduce cell proliferation in some cancer cell lines1,2, more recent studies on liver3 and brain4 tumours suggest that acetate may actually promote tumour growth. Acetate in the cell is normally converted into acetyl-coA by two enzymes and metabolized; mitochondrial (ACSS1) and cytosolic (ACSS2) acetyl-coA synthetase. In the mitochondria acetyl-coA is utilized in the TCA cycle. In the cytosol it is utilized in lipid synthesis. In this study, the effect of acetate treatment on the growth of HT29 colon cancer cell line and its mechanism of action was assessed. HT29 human colorectal adenocarcinoma cells were treated with 10mM NaAc and cell viability, cellular bioenergetics and gene expression were investigated. Cell viability was assessed 24 hours after treatment using an MTT assay (Sigma, UK, n=8). Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured by XFe Analyzer (Seahorse Bioscience, USA). After a baseline reading cells were treated and OCR and ECAR measurements were observed for 18 hours (n=4). Total mRNA was isolated 24 hours after treatment using RNeasy kit (Qiagen, USA). Quantitative PCR reactions were performed using Taqman gene expression assays and Taqman Universal PCR Master Mix (ThermoFisher Scientific, UK) on Applied Biosystems 7500 Fast Real-Time PCR System (Life Technologies, USA) and analysed using ΔΔCt method (n=3). Acetate treatment led to a significant reduction in cell viability (15.9%, Figure 1). OCR, an indicator of oxidative phosphorylation, was significantly increased (p<0.0001) while ECAR, an indicator of glycolysis, was significantly reduced (p<0.0001, Figure 2). Gene expression of ACSS1 was increased by 1.7 fold of control (p=0.07) and ACSS2 expression was reduced to 0.6 fold of control (p=0.06, Figure 3). In conclusion, in colon cancer cells acetate supplementation induces cell death and increases oxidative capacity. These changes together with the trending decrease in ACSS2 expression suggest suppression of lipid synthesis pathways. We hypothesize that the reduced tumor growth by acetate is a consequence of the suppression of ACSS2 and lipid synthesis, both effects reported previously to reduce tumor growth3–5. These effects clearly warrant further investigation.