8 resultados para Workflows semânticos

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vast majority of scientific grid applications are either parameter sweep applications or a significant subpart of these applications belong to class of parameter sweep activities. The paper describes a new graphical workflow language in which any node of the DAG-based workflow can be a parameter sweep node and the execution of these nodes are transparently executed either in service grids or in desktop grids depending on the computational complexity of the workflow node. The new concept is supported by the CancerGrid portal that has been established for a chemist community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific workflows orchestrate the execution of complex experiments frequently using distributed computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing workflows from potentially different workflow systems to achieve more complex and experimentation minimizing workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. This paper is focused at fostering interoperability across meta-workflows that combine workflows of different workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow and its different types to standardize their data structures used to describe workflows to be published and shared via public repositories. The paper also includes thorough formalization of two workflow interoperability approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the concepts of meta-workflows and workflow interoperability within a scientific simulation platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Grid Execution Management for Legacy Code Architecture (GEMLCA) enables exposing legacy applications as Grid services without re-engineering the code, or even requiring access to the source files. The integration of current GT3 and GT4 based GEMLCA implementations with the P-GRADE Grid portal allows the creation, execution and visualisation of complex Grid workflows composed of legacy and nonlegacy components. However, the deployment of legacy codes and mapping their execution to Grid resources is currently done manually. This paper outlines how GEMLCA can be extended with automatic service deployment, brokering, and information system support. A conceptual architecture for an Automatic Deployment Service (ADS) and for an x-Service Interoperability Layer (XSILA) are introduced explaining how these mechanisms support desired features in future releases of GEMLCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides core project partners, the SCI-BUS project also supported several external user communities in developing and setting up customized science gateways. The focus was on large communities typically represented by other European research projects. However, smaller local efforts with the potential of generalizing the solution to wider communities were also supported. This chapter gives an overview of support activities related to user communities external to the SCI-BUS project. A generic overview of such activities is provided followed by the detailed description of three gateways developed in collaboration with European projects: the agINFRA Science Gateway for Workflows for agricultural research, the VERCE Science Gateway for seismology, and the DRIHM Science Gateway for weather research and forecasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researchers want to run scientific experiments focusing on their disciplines. They do not want to know how and where the experiments are executed. Science gateways hide details by coordinating the execution of experiments using different infrastructures and workflow systems. ER-flow/SHIWA and SCI-BUS project developed repositories to share artefacts such as applications, portlets, workflows, etc. inside and among research communities. Sharing artefacts in re-positories enable gateway developers to reuse them when building a new gateway and/or creating a new application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E-scientists want to run their scientific experiments on Distributed Computing Infrastructures (DCI) to be able to access large pools of resources and services. To run experiments on these infrastructures requires specific expertise that e-scientists may not have. Workflows can hide resources and services as a virtualization layer providing a user interface that e-scientists can use. There are many workflow systems used by research communities but they are not interoperable. To learn a workflow system and create workflows in this workflow system may require significant efforts from e-scientists. Considering these efforts it is not reasonable to expect that research communities will learn new workflow systems if they want to run workflows developed in other workflow systems. The solution is to create workflow interoperability solutions to allow workflow sharing. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed two interoperability solutions to support workflow sharing: Coarse-Grained Interoperability (CGI) and Fine-Grained Interoperability (FGI). The project created the SHIWA Simulation Platform (SSP) to implement the Coarse-Grained Interoperability approach as a production-level service for research communities. The paper describes the CGI approach and how it enables sharing and combining existing workflows into complex applications and run them on Distributed Computing Infrastructures. The paper also outlines the architecture, components and usage scenarios of the simulation platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researchers want to analyse Health Care data which may requires large pools of compute and data resources. To have them they need access to Distributed Computing Infrastructures (DCI). To use them it requires expertise which researchers may not have. Workflows can hide infrastructures. There are many workflow systems but they are not interoperable. To learn a workflow system and create workflows in a workflow system may require significant effort. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows of other workflow systems. As a result, the lack of interoperability prevents workflow sharing and a vast amount of research efforts is wasted. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed the Coarse-Grained Interoperability (CGI) to enable workflow sharing. The project created the SHIWA Simulation Platform (SSP) to support CGI as a production-level service. The paper describes how the CGI approach can be used for analysis and simulation in Health Care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.