3 resultados para Wind speed extrapolation

em WestminsterResearch - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines to what extent individual measures of well-being are correlated with daily weather patterns in the United Kingdom. Merging daily weather data with data from the British Household Panel Survey (BHPS) allows us to test whether measures of well-being are correlated with temperature, sunshine, rainfall and wind speed. We are able to make a strong case for causality due to ‘randomness’ of weather in addition to using regression methods that eliminate time-invariant individual level heterogeneity. Results suggest that some weather parameters (such as sunshine) are correlated with some measures of well-being (job satisfaction); however, in general the effect of weather on subjective measures of well-being is very small.