1 resultado para WEB (Computer program language)
em WestminsterResearch - UK
Filtro por publicador
- University of Cagliari UniCA Eprints (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (39)
- Biblioteca de Teses e Dissertações da USP (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (5)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (16)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (4)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (28)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Línguas & Letras - Unoeste (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (25)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- Queensland University of Technology - ePrints Archive (85)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (117)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (40)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Metodista de São Paulo (6)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (6)
- University of Michigan (180)
- University of Queensland eSpace - Australia (7)
- University of Southampton, United Kingdom (29)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Safeguarding organizations against opportunism and severe deception in computer-mediated communication (CMC) presents a major challenge to CIOs and IT managers. New insights into linguistic cues of deception derive from the speech acts innate to CMC. Applying automated text analysis to archival email exchanges in a CMC system as part of a reward program, we assess the ability of word use (micro-level), message development (macro-level), and intertextual exchange cues (meta-level) to detect severe deception by business partners. We empirically assess the predictive ability of our framework using an ordinal multilevel regression model. Results indicate that deceivers minimize the use of referencing and self-deprecation but include more superfluous descriptions and flattery. Deceitful channel partners also over structure their arguments and rapidly mimic the linguistic style of the account manager across dyadic e-mail exchanges. Thanks to its diagnostic value, the proposed framework can support firms’ decision-making and guide compliance monitoring system development.