1 resultado para Vector autoregression (VAR)
em WestminsterResearch - UK
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Aquatic Commons (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (65)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (55)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (12)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (2)
- Digital Commons at Florida International University (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (16)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (7)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (21)
- Indian Institute of Science - Bangalore - Índia (144)
- Infoteca EMBRAPA (6)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Massachusetts Institute of Technology (14)
- Ministerio de Cultura, Spain (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (70)
- Queensland University of Technology - ePrints Archive (70)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (41)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositorio Institucional de la Universidad Nacional Agraria (53)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (115)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (8)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (35)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (4)
- University of Southampton, United Kingdom (7)
- WestminsterResearch - UK (1)
Resumo:
This paper provides an empirical study to assess the forecasting performance of a wide range of models for predicting volatility and VaR in the Madrid Stock Exchange. The models performance was measured by using different loss functions and criteria. The results show that FIAPARCH processes capture and forecast more accurately the dynamics of IBEX-35 returns volatility. It is also observed that assuming a heavy-tailed distribution does not improve models ability for predicting volatility. However, when the aim is forecasting VaR, we find evidence of that the Student’s t FIAPARCH outperforms the models it nests the lower the target quantile.