4 resultados para Transcranial magnetic stimulation

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in cognitive neuroscience relies on methodological developments to increase the specificity of knowledge obtained regarding brain function. For example, in functional neuroimaging the current trend is to study the type of information carried by brain regions rather than simply compare activation levels induced by task manipulations. In this context noninvasive transcranial brain stimulation (NTBS) in the study of cognitive functions may appear coarse and old fashioned in its conventional uses. However, in their multitude of parameters, and by coupling them with behavioral manipulations, NTBS protocols can reach the specificity of imaging techniques. Here we review the different paradigms that have aimed to accomplish this in both basic science and clinical settings and follow the general philosophy of information-based approache

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging studies of aesthetic appreciation have shown that activity in the lateral occipital area (LO)—a key node in the object recognition pathway—is modulated by the extent to which visual artworks are liked or found beautiful. However, the available evidence is only correlational. Here we used transcranial magnetic stimulation (TMS) to investigate the putative causal role of LO in the aesthetic appreciation of paintings. In our first experiment, we found that interfering with LO activity during aesthetic appreciation selectively reduced evaluation of representational paintings, leaving appreciation of abstract paintings unaffected. A second experiment demonstrated that, although the perceived clearness of the images overall positively correlated with liking, the detrimental effect of LO TMS on aesthetic appreciation does not owe to TMS reducing perceived clearness. Taken together, our findings suggest that object-recognition mechanisms mediated by LO play a causal role in aesthetic appreciation of representational art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The right occipital face area (rOFA) is known to be involved in face discrimination based on local featural information. Whether this region is involved in global, holistic stimulus processing is not known. Objective We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli. Methods Two studies were carried out: In Experiment 1, participants performed a detection task involving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously stored representations. Experiment 2 required participants to detect shapes which are recognized via bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity of rightOFA's implication in holistic detection. Results In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO but not over rOFA. Conclusions Our results demonstrate that rOFA is causally implicated in the type of top-down holistic detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not appear to play a causal role in in detection of shapes based on bottom-up integration of local components, demonstrating that its involvement in processing non-face stimuli is specific for holistic processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microvesicles are released from cell surfaces constitutively during early apoptosis or upon activation with various stimuli including sublytic membrane attack complex (MAC). This study shows that an alternating current, pulsed, extremely low-frequency electromagnetic field (0.3 μT at 10 Hz, 6 V AC) induced transient plasma membrane damage that allowed calcium influx. This in turn caused a release of stimulated microvesicles (sMV). When extracellular calcium was chelated with EGTA, sMV biogenesis initiated by ELFMF was markedly reduced and the reduction was less than when the stimulation was the deposition of sublytic MAC. This suggested that pulsed ELFMF resulted in transcellular membrane pores causing organelles to leak additional calcium into the cytoplasm (which EGTA would not chelate) which itself can lead to sMV release.