4 resultados para Trafficking

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood–brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article seeks to revise Jo Doezema’s suggestion that ‘the white slave’ was the only dominant representation of ‘the trafficked woman’ used by early anti-trafficking advocates in Europe and the United States, and that discourses based on this figure of injured innocence are the only historical discourses that are able to shine light on contemporary anti-trafficking rhetoric. ‘The trafficked woman’ was a figure painted using many shades of grey in the past, with a number of injurious consequences, not only for trafficked persons but also for female labour migrants and migrant populations at large. In England, dominant organizational portrayals of ‘the trafficked woman’ had first acquired these shades by the 1890s, when trafficking started to proliferate amid mass migration from Continental Europe, and when controversy began to mount over the migration to the country of various groups of working-class foreigner. The article demonstrates these points by exploring the way in which the Jewish Association for the Protection of Girls and Women (JAPGW), one of the pillars of England’s early anti-trafficking movement, represented the female Jewish migrants it deemed at risk from being trafficked into sex work between 1890 and 1910. It argues that the JAPGW stigmatised these women, placing most of the onus for trafficking upon them and positioning them to a greater or a lesser extent as ‘undesirable and undeserving working-class foreigners’ who could never become respectable English women. It also contends that the JAPGW, in outlining what was wrong with certain female migrants, drew a line between ‘the migrant’ and respectable English society at large, and paradoxically endorsed the extension of the very ‘anti-alienist’ and Antisemitic prejudices that it strove to dispel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMPA receptors are glutamate-gated cation channels assembled from GluA1-4 subunits and have properties that are strongly dependent on the subunit composition. The subunits have different propensities to form homomeric or various heteromeric receptors expressed on cell surface, but the underlying mechanisms are still poorly understood. Here, we examined the biochemical basis for the poor ability of GluA3 subunits to form homomeric receptors, linked previously to two amino acid residues, Y454 and R461, in its ligand-binding domain (LBD). Surface expression of GluA3 was improved by co-assembly with GluA2 but not with stargazin, a trafficking chaperone and modulator of AMPA receptors. The secretion efficiency of GluA2 and GluA3 LBDs paralleled the transport difference between the respective full-length receptors and was similarly dependent on Y454/R461, but not on LBD stability. In comparison to GluA2, GluA3 homomeric receptors showed a strong and Y454/R461-dependent tendency to aggregate both in the macroscopic scale measured as lower solubility in nonionic detergent and in the microscopic scale evident as the preponderance of hydrodynamically large structures in density gradient centrifugation and native gel electrophoresis. We conclude that the impaired surface expression of homomeric GluA3 receptors is caused by nonproductive assembly and aggregation to which LBD residues Y454 and R461 strongly contribute. This aggregation inhibits the entry of newly synthesized GluA3 receptors to the secretory pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning.