2 resultados para Traffic flow breakdown
em WestminsterResearch - UK
Resumo:
This paper proposes an en route speed reduction to complement current ground delay practices in air traffic flow management. Given a nominal cruise speed, there exists a bounded range of speeds that allows aircraft to fly slower with the same or lower fuel consumption than the nominal flight. Therefore, flight times are increased and delay can be partially performed in the air, at no extra fuel cost for the operator. This concept has been analyzed in an initial feasibility study, computing the maximum amount of delay that can be performed in the air in some representative flights. The impact on fuel consumption has been analyzed, and two scenarios are proposed: the flight fuel remains the same as in the nominal flight, and some extra fuel allowance is permitted in order to face uncertainties. Results show significant values of airborne delay that may be useful in many situations, with the exception of short hauls where airborne delay may be too short. If cruise altitude is changed, the amount of airborne delay increases, since changes in cruise speed modify the optimal flight altitudes. From the analyzed flights, a linear dependency is found relating the airborne delay with the amount of extra fuel allowance.
Resumo:
En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.