2 resultados para Total phenolic compounds
em WestminsterResearch - UK
Resumo:
Angiotensin-converting enzyme (ACE) plays a critical role in rennin-angiotensin system. Recently, natural products isolated from herbal medicines revealed inhibitory effects against ACE which suggested their potential activities in regulating blood pressure. In this study, ACE inhibition (ACEI) of 21 phenylethanoid glycosides and related phenolic compounds were investigated by measuring the production of HA a rapid, sensitive, accurate and specific ultra-performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method. The test compounds showed different inhibitory potencies on ACE ranging from 5.29 to 95.01% at 50 mM, and the compounds with ACEI higher than 50% were selected for further IC50 determination. The IC50 values were from 0.53 ± 0.04 to 15.035 ± 0.036 mM. The structure-inhibition relationship were then explored and the result showed that cinnamoyl groups played an essential role in ACEI of phenylethanoid glycosides. Furthermore, the sub-structures of increasing ACEI for phenylethanoid glycosides is more hydroxyls and less steric hindrance to chelate the active site Zn2+ of ACE. In summary, our results suggested that phenylethanoid glycosides are a widely available source of anti-hypertensive natural products and the information provided from structure-inhibition relationship study could aid the design of structurally modified phenylethanoid glycosides as anti-hypertensive drugs.
Resumo:
We used1H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 ± 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 ± 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123.7 ± 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 ± 3.6 mmol/kg dry wt) and Gast (28.5 ± 3.5 mmol/kg dry wt) were higher (P < 0.001 andP < 0.01, respectively) compared with TA (13.6 ± 2.4 mmol/kg dry wt). The IT values were found to be 44.8 ± 4.6 and 36.5 ± 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 ± 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 ± 11.2 (Sol), 119.1 ± 18.5 (Gast), and 91.4 ± 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.