6 resultados para Temporary pools
em WestminsterResearch - UK
Resumo:
The paper explores the issue of temporary projects on vacant land focusing on London in the 2007-2012 downturn. Using a case study approach, a link has been identified between the success of temporary projects and a longer-term vision, as well as a move toward better integration between temporary occupants and developer/land-owner. Within this paradox the whole idea of temporariness is put under question, as is the traditional mainstream depiction of bottom-up in opposition to top-down action. These trends are contextualised within the dynamics of recession that has triggered new types of creative conversations between parties traditionally considered in opposition and may contribute to reframing urban development as an incremental, organic and collaborative process.
Resumo:
BACKGROUND: The experienced smoker maintains adequate nicotine levels by 'puff-by-puff self-control' which also avoids symptomatic nauseating effects of nicotine overdose. It is postulated that there is a varying 'dynamic threshold for nausea' into which motion sickness susceptibility provides an objective toxin-free probe. Hypotheses were that: (i) nicotine promotes motion sickness whereas deprivation protects; and (ii) pleasurable effects of nicotine protect against motion sickness whereas adverse effects of withdrawal have the opposite effect. METHODS: Twenty-six healthy habitual cigarette smokers (mean±SD) 15.3±7.6cigs/day, were exposed to a provocative cross-coupled (coriolis) motion on a turntable, with sequences of 8 head movements every 30s. This continued to the point of moderate nausea. Subjects were tested after either ad-lib normal smoking (SMOKE) or after overnight deprivation (DEPRIV), according to a repeated measures design counter-balanced for order with 1-week interval between tests. RESULTS: Deprivation from recent smoking was confirmed by objective measures: exhaled carbon monoxide CO was lower (P<0.001) for DEPRIV (8.5±5.6ppm) versus SMOKE (16.0±6.3ppm); resting heart rate was lower (P<0.001) for DEPRIV (67.9±8.4bpm) versus SMOKE (74.3±9.5bpm). Mean±SD sequences of head movements tolerated to achieve moderate nausea were more (P=0.014) for DEPRIV (21.3±9.9) versus SMOKE (18.3±8.5). DISCUSSION: Tolerance to motion sickness was aided by short-term smoking deprivation, supporting Hypothesis (i) but not Hypothesis (ii). The effect was was approximately equivalent to half of the effect of an anti-motion sickness drug. Temporary nicotine withdrawal peri-operatively may explain why smokers have reduced risk for postoperative nausea and vomiting (PONV).
Resumo:
E-scientists want to run their scientific experiments on Distributed Computing Infrastructures (DCI) to be able to access large pools of resources and services. To run experiments on these infrastructures requires specific expertise that e-scientists may not have. Workflows can hide resources and services as a virtualization layer providing a user interface that e-scientists can use. There are many workflow systems used by research communities but they are not interoperable. To learn a workflow system and create workflows in this workflow system may require significant efforts from e-scientists. Considering these efforts it is not reasonable to expect that research communities will learn new workflow systems if they want to run workflows developed in other workflow systems. The solution is to create workflow interoperability solutions to allow workflow sharing. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed two interoperability solutions to support workflow sharing: Coarse-Grained Interoperability (CGI) and Fine-Grained Interoperability (FGI). The project created the SHIWA Simulation Platform (SSP) to implement the Coarse-Grained Interoperability approach as a production-level service for research communities. The paper describes the CGI approach and how it enables sharing and combining existing workflows into complex applications and run them on Distributed Computing Infrastructures. The paper also outlines the architecture, components and usage scenarios of the simulation platform.
Resumo:
Researchers want to analyse Health Care data which may requires large pools of compute and data resources. To have them they need access to Distributed Computing Infrastructures (DCI). To use them it requires expertise which researchers may not have. Workflows can hide infrastructures. There are many workflow systems but they are not interoperable. To learn a workflow system and create workflows in a workflow system may require significant effort. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows of other workflow systems. As a result, the lack of interoperability prevents workflow sharing and a vast amount of research efforts is wasted. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed the Coarse-Grained Interoperability (CGI) to enable workflow sharing. The project created the SHIWA Simulation Platform (SSP) to support CGI as a production-level service. The paper describes how the CGI approach can be used for analysis and simulation in Health Care.
Resumo:
Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation.
Resumo:
The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flex- ible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ven- tral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple dis- tinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated.