7 resultados para Technology-enhanced learning and teaching

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancing the quality of learning and teaching in higher education has been on the English national agenda for more than a decade. The Government and funding organisations have enabled universities to focus on creating a culture of excellence in learning and teaching and continuing academic and professional development. This paper describes some of the strategies that have promoted a culture of quality teaching in higher education in England and how one organisation, the University of Westminster has implemented those strategies to engender a culture of quality enhancement and continuing professional development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lifelong learning exists today in the context of a cultural and societal shift to a knowledge-based, technology-enhanced, and rapidly-changing economy. It has a significant impact on people’s lives and has become of vital importance with the emergence of new technologies that change how people communicate, collect information, and collaborate with others. The emerging technologies, such as social networking, interactive media and game technology, have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in lifelong learning through the Technology Enhanced Learning (TEL). The TEL encourages learners as producers to embed personalized knowledge and collective experience on individualized learning within professional practice. It becomes more personal and social than traditional lifelong learning, especially about the ‘learning as socially grounded’ aspects. This paper studies the development of technoself system during lifelong learning and introduces technoself enhanced learning as a novel sociological framework of lifelong learning to couple the educational dimension with social dimension in order to enhance learner engagement by shaping personal learning focus and setting. We examine how people construct their own inquiry and learn from others, how people shift and adapt in these technoself-enhanced learning environments, and how learner engagement is improving as the involvement of learners as producers in lifelong learning. We further discuss the barriers and the positive and negative unintended consequences of using technology for lifelong learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 1990s, the Higher Education Funding Councils of England and the equivalent body in Northern Ireland (DEL NI) took a positive step by supporting the development of initiatives that promoted and supported innovation and the recognition of excellence in learning and teaching in Higher Education. One of the earliest manifestations of this support was the National Teaching Fellowship Scheme which celebrates its tenth anniversary this year, making this a timely opportunity to consider the personal and professional impact this scheme has had on the quality of teaching throughout the Higher Education sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The move into higher education is a real challenge for students from all educational backgrounds, with the adaptation to a new curriculum and style of learning and teaching posing a daunting task. A series of exercises were planned to boost the impact of the mathematics support for level four students and was focussed around a core module for all students. The intention was to develop greater confidence in tackling mathematical problems in all levels of ability and to provide more structured transition period in the first semester of level 4. Over a two-year period the teaching team for Biochemistry and Molecular Biology provided a series of structured formative tutorials and “interactive” online problems. Video solutions to all formative problems were made available, in order that students were able to engage with the problems at any time and were not disadvantaged if they could not attend. The formative problems were specifically set to dovetail into a practical report in which the mathematical skills developed were specifically assessed. Students overwhelmingly agreed that the structured formative activities had broadened their understanding of the subject and that more such activities would help. Furthermore, it is interesting to note that the package of changes undertaken resulted in a significant increase in the overall module mark over the two years of development.