7 resultados para Technology Network
em WestminsterResearch - UK
Resumo:
The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flex- ible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ven- tral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple dis- tinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated.
Resumo:
Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.
Resumo:
Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiology
Resumo:
A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support “relational integration” (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could reflect the recruitment of additional “domain-general” resources when processing more difficult problems in general as opposed to RI specifi- cally. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain- general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically. Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.
Resumo:
Computer games have now been around for over three decades and the term serious games has been attributed to the use of computer games that are thought to have educational value. Game-based learning (GBL) has been applied in a number of different fields such as medicine, languages and software engineering. Furthermore, serious games can be a very effective as an instructional tool and can assist learning by providing an alternative way of presenting instructions and content on a supplementary level, and can promote student motivation and interest in subject matter resulting in enhanced learning effectiveness. REVLAW (Real and Virtual Reality Law) is a research project that the departments of Law and Computer Science of Westminster University have proposed as a new framework in which law students can explore a real case scenario using Virtual Reality (VR) technology to discover important pieces of evidence from a real-given scenario and make up their mind over the crime case if this is a murder or not. REVLAW integrates the immersion into VR as the perception of being physically present in a non-physical world. The paper presents the prototype framework and the mechanics used to make students focus on the crime case and make the best use of this immersive learning approach.
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.