4 resultados para Superiority and Inferiority Multi-criteria Ranking (SIR) Method

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we analyse the emerging patterns of regional collaboration for innovation projects in China, using official government statistics of 30 Chinese regions. We propose the use of Ordinal Multidimensional Scaling and Cluster analysis as a robust method to study regional innovation systems. Our results show that regional collaborations amongst organisations can be categorised by means of eight dimensions: public versus private organisational mindset; public versus private resources; innovation capacity versus available infrastructures; innovation input (allocated resources) versus innovation output; knowledge production versus knowledge dissemination; and collaborative capacity versus collaboration output. Collaborations which are aimed to generate innovation fell into 4 categories, those related to highly specialised public research institutions, public universities, private firms and governmental intervention. By comparing the representative cases of regions in terms of these four innovation actors, we propose policy measures for improving regional innovation collaboration within China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such asMRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat–muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variationwas 1.4%for IAAT and 1.2%for ASAT, the intra-observer correlationwas 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.