2 resultados para Six point evaluation

em WestminsterResearch - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit  beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit  beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient  digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the  modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP  modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of  modulators topologies, is intended to accelerate the design process and evaluation of  modulators. This design tool is further developed to enable the design, analysis and evaluation of  beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.