1 resultado para Simplification of nature
em WestminsterResearch - UK
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Applied Math and Science Education Repository - Washington - USA (4)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (7)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (20)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Boston University Digital Common (3)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (37)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (20)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (14)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (6)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- Ecology and Society (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (13)
- Helda - Digital Repository of University of Helsinki (21)
- Indian Institute of Science - Bangalore - Índia (26)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (29)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (66)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (22)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (110)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (13)
- Universidade Federal do Rio Grande do Norte (UFRN) (29)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (27)
- University of Connecticut - USA (2)
- University of Michigan (160)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
Uncertainty in decision-making for patients’ risk of re-admission arises due to non-uniform data and lack of knowledge in health system variables. The knowledge of the impact of risk factors will provide clinicians better decision-making and in reducing the number of patients admitted to the hospital. Traditional approaches are not capable to account for the uncertain nature of risk of hospital re-admissions. More problems arise due to large amount of uncertain information. Patients can be at high, medium or low risk of re-admission, and these strata have ill-defined boundaries. We believe that our model that adapts fuzzy regression method will start a novel approach to handle uncertain data, uncertain relationships between health system variables and the risk of re-admission. Because of nature of ill-defined boundaries of risk bands, this approach does allow the clinicians to target individuals at boundaries. Targeting individuals at boundaries and providing them proper care may provide some ability to move patients from high risk to low risk band. In developing this algorithm, we aimed to help potential users to assess the patients for various risk score thresholds and avoid readmission of high risk patients with proper interventions. A model for predicting patients at high risk of re-admission will enable interventions to be targeted before costs have been incurred and health status have deteriorated. A risk score cut off level would flag patients and result in net savings where intervention costs are much higher per patient. Preventing hospital re-admissions is important for patients, and our algorithm may also impact hospital income.