6 resultados para Simple interest

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses our approach to the difficult task of measuring the impact of an eLearning service, the Graduate Virtual Research Environment (GVRE), provided to doctoral students at a UK University since October 2009. The GVRE provides research students with access to a training needs analysis tool which is linked to a repository of video learning resources created by academics and experienced research students. This paper explores the use of the Rugby Team Impact Framework as a guide to measuring impact and our use of a number of techniques to gather evidence about the changes resulting from use of the GVRE. The framework gives four levels of evidence, starting with simple measures of provision, through attendance, interest and to outcomes. As with other research, we found the former easy to assess but the outcomes harder to define. We conclude with a critical evaluation of our research process and outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the evaluation of raw keratin as a potential material to develop composites with novel characteristics. Herein, we report a mild and eco-friendly fabrication of in-house extracted feather keratin-based novel enzyme assisted composites consisting of ethyl cellulose (EC) as a backbone material. A range of composites between keratin and EC using different keratin: EC ratios were prepared and characterised. Comparing keratin to the composites, the FT-IR peak at 1,630 cm-1 shifted to a lower wavenumber of 1,610 cm-1 in keratin-EC which typically indicates the involvement of β-sheet structures of the keratin during the graft formation process. SEM analysis revealed that the uniform dispersion of the keratin increases the area of keratin-EC contact which further contributes to the efficient functionality of the resulting composites. In comparison to the pristine keratin and EC, a clear shift in the XRD peaks was also observed at the specific region of 2-Theta values of keratin-g-EC. The thermo- mechanical properties of the composites reached their highest levels in comparison to the keratin which was too fragile to be measured for its mechanical properties. Considerable improvement in the water contact angle and surface tension properties was also recorded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of the availability and cost of the raw material. The durability of disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this issue. Enzymatic grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions, and increasing availability of scientific knowledge. Over the last several years, research covering various applications of robust enzymes like laccases and lipases has been increased rapidly, particularly in the field of polymer science, to graft multi-functional materials of interest. In principle, enzyme-assisted grafting may modify/impart a variety of functionalities to the grafted composites which individual materials fail to demonstrate on their own. The modified polymers through grafting have a bright future and their development is practically boundless. In the present study series of graft composites with poly(3-hydroxybutyrate) (P(3HB) as side chain and cellulose as a backbone polymer were successfully synthesised by introducing enzymatic grafting technique where laccase and lipase were used as model catalysts [1-3]. Subsequently, the resulting composites were removed from the casting surface under ambient environment and characterised by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) in detail. Moreover, the thermo-mechanical behaviours of the grafted composites were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analyser (DMA) measurements, respectively. In addition, hydrophobic and hydrophilic characteristics of the grafted polymers were studied through drop contour analysis using water contact angle (WCA). In comparison to the individual counterparts improvement was observed in the thermo- mechanical properties of the composites to varied extent. The tensile strength, elongation at break, and Young’s modulus values of the composites reached their highest levels in comparison to the films prepared with pure P(3HB) only which was too fragile to measure any of the above said characteristics. Interestingly, untreated P(3HB) was hydrophobic in nature and after lipase treatment P(3HB) and P(3HB)-EC-based graft composite attained higher level of hydrophilicity. This is a desired characteristic that enhances the biocompatibility of the materials for proper cell adhesion and proliferation therefore suggesting potential candidates for tissue engineering/bio-medical type applications [3]. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the laccase/lipase assisted grafting of P(3HB) [1-3]. The newly grafted composites exhibit unique functionalities with wider range of potential applications in bio-plastics, pharmaceutical, and cosmetics industries, tissue engineering, and biosensors. [1] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Cellulose 21, 3613-3621 (2014). [2] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Carbohydrate Polymers 113, 131-137 (2014). [3] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Polymer Chemistry In-Press, DOI: 10.1039/C4PY0 0857J (2014).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.