2 resultados para Serine Endopeptidases

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca2+/5′-monophosphate-activated protein kinase (AMPK)-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6) kinase 1 (IP6K1) produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7). IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this evidence, we suggest that inhibition of IP6K1 may increase insulin sensitivity and provide a novel research direction in the treatment of insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium necrophorum is a causative agent of Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. Disseminated intravascular coagulation is also a documented symptom. F. necrophorum is a Gram-negative, anaerobic bacterium known to possess virulence genes such as a haemolysin, filamentous haemagglutinin and leukotoxin, which target host blood components. Ecotin is a serine protease inhibitor that has not previously been characterised in F. necrophorum, but in E.coli has been shown to have a potent anticoagulant effect. Next generation and Sanger sequencing were used to confirm the presence of the ecotin gene in the genomes of a collection of F. necrophorum clinical and reference strains. When translated, it was found to be a highly conserved protein made up of159 amino acids. Enzyme/substrate inhibition assays demonstrated that F. necrophorum ecotin inhibits human plasma kallikrein and human neutrophil elastase in a dose-dependent manner. Data will also be presented on the anticoagulant effects of ecotin during activated partial thromboplastin time, thrombin time and prothrombin time tests on human donor blood. The mechanisms for how this organism reaches the bloodstream and the significance of this serine protease inhibitor during F. necrophorum infections remain to be elucidated