4 resultados para Secure Computation
em WestminsterResearch - UK
Resumo:
Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.
Resumo:
In this paper we propose SETS, a protocol with main aim to provide secure and private communication during emergency situations. SETS achieves security of the exchanged information, attack resilience and user's privacy. In addition, SETS can be easily adapted for mobile devices, since field experimental results show the effectiveness of the protocol on actual smart-phone platforms.
Resumo:
In this paper, we describe a decentralized privacy-preserving protocol for securely casting trust ratings in distributed reputation systems. Our protocol allows n participants to cast their votes in a way that preserves the privacy of individual values against both internal and external attacks. The protocol is coupled with an extensive theoretical analysis in which we formally prove that our protocol is resistant to collusion against as many as n-1 corrupted nodes in the semi-honest model. The behavior of our protocol is tested in a real P2P network by measuring its communication delay and processing overhead. The experimental results uncover the advantages of our protocol over previous works in the area; without sacrificing security, our decentralized protocol is shown to be almost one order of magnitude faster than the previous best protocol for providing anonymous feedback.
Resumo:
Cloud storage has rapidly become a cornerstone of many businesses and has moved from an early adopters stage to an early majority, where we typically see explosive deployments. As companies rush to join the cloud revolution, it has become vital to create the necessary tools that will effectively protect users' data from unauthorized access. Nevertheless, sharing data between multiple users' under the same domain in a secure and efficient way is not trivial. In this paper, we propose Sharing in the Rain – a protocol that allows cloud users' to securely share their data based on predefined policies. The proposed protocol is based on Attribute-Based Encryption (ABE) and allows users' to encrypt data based on certain policies and attributes. Moreover, we use a Key-Policy Attribute-Based technique through which access revocation is optimized. More precisely, we show how to securely and efficiently remove access to a file, for a certain user that is misbehaving or is no longer part of a user group, without having to decrypt and re-encrypt the original data with a new key or a new policy.