4 resultados para SUBCUTANEOUS CONNECTIVE-TISSUE
em WestminsterResearch - UK
Resumo:
Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such asMRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat–muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variationwas 1.4%for IAAT and 1.2%for ASAT, the intra-observer correlationwas 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.
Resumo:
Sexual dimorphism in adiposity is well described in adults, but the age at which differences first manifest is uncertain. Using a prospective cohort, we describe longitudinal changes in directly measured adiposity and intrahepatocellular lipid (IHCL) in relation to sex in healthy term infants. At median ages of 13 and 63 days, infants underwent quantification of adipose tissue depots by whole-body magnetic resonance imaging and measurement of IHCL by in vivo proton magnetic resonance spectroscopy. Longitudinal data were obtained from 70 infants (40 boys and 30 girls). In the neonatal period girls are more adipose in relation to body size than boys. At follow-up (median age 63 days), girls remained significantly more adipose. The greater relative adiposity that characterises girls is explained by more subcutaneous adipose tissue and this becomes increasingly apparent by follow-up. No significant sex differences were seen in IHCL. Sex-specific differences in infant adipose tissue distribution are in keeping with those described in later life, and suggest that sexual dimorphism in adiposity is established in early infancy.
Resumo:
CONTEXT AND OBJECTIVE: No current biomarker can reliably predict visceral and liver fat content, both of which are risk factors for cardiovascular disease. Vagal tone has been suggested to influence regional fat deposition. Pancreatic polypeptide (PP) is secreted from the endocrine pancreas under vagal control. We investigated the utility of PP in predicting visceral and liver fat. PATIENTS AND METHODS: Fasting plasma PP concentrations were measured in 104 overweight and obese subjects (46 men and 58 women). In the same subjects, total and regional adipose tissue, including total visceral adipose tissue (VAT) and total subcutaneous adipose tissue (TSAT), were measured using whole-body magnetic resonance imaging. Intrahepatocellular lipid content (IHCL) was quantified by proton magnetic resonance spectroscopy. RESULTS: Fasting plasma PP concentrations positively and significantly correlated with both VAT (r = 0.57, P < .001) and IHCL (r = 0.51, P < .001), but not with TSAT (r = 0.02, P = .88). Fasting PP concentrations independently predicted VAT after controlling for age and sex. Fasting PP concentrations independently predicted IHCL after controlling for age, sex, body mass index (BMI), waist-to-hip ratio, homeostatic model assessment 2-insulin resistance, (HOMA2-IR) and serum concentrations of triglyceride (TG), total cholesterol (TC), and alanine aminotransferase (ALT). Fasting PP concentrations were associated with serum ALT, TG, TC, low- and high-density lipoprotein cholesterol, and blood pressure (P < .05). These associations were mediated by IHCL and/or VAT. Fasting PP and HOMA2-IR were independently significantly associated with hepatic steatosis (P < .01). CONCLUSIONS: Pancreatic polypeptide is a novel predictor of visceral and liver fat content, and thus a potential biomarker for cardiovascular risk stratification and targeted treatment of patients with ectopic fat deposition.
Resumo:
Introduction Quantitative and accurate measurements of fat and muscle in the body are important for prevention and diagnosis of diseases related to obesity and muscle degeneration. Manually segmenting muscle and fat compartments in MR body-images is laborious and time-consuming, hindering implementation in large cohorts. In the present study, the feasibility and success-rate of a Dixon-based MR scan followed by an intensity-normalised, non-rigid, multi-atlas based segmentation was investigated in a cohort of 3,000 subjects. Materials and Methods 3,000 participants in the in-depth phenotyping arm of the UK Biobank imaging study underwent a comprehensive MR examination. All subjects were scanned using a 1.5 T MR-scanner with the dual-echo Dixon Vibe protocol, covering neck to knees. Subjects were scanned with six slabs in supine position, without localizer. Automated body composition analysis was performed using the AMRA Profiler™ system, to segment and quantify visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT) and thigh muscles. Technical quality assurance was performed and a standard set of acceptance/rejection criteria was established. Descriptive statistics were calculated for all volume measurements and quality assurance metrics. Results Of the 3,000 subjects, 2,995 (99.83%) were analysable for body fat, 2,828 (94.27%) were analysable when body fat and one thigh was included, and 2,775 (92.50%) were fully analysable for body fat and both thigh muscles. Reasons for not being able to analyse datasets were mainly due to missing slabs in the acquisition, or patient positioned so that large parts of the volume was outside of the field-of-view. Discussion and Conclusions In conclusion, this study showed that the rapid UK Biobank MR-protocol was well tolerated by most subjects and sufficiently robust to achieve very high success-rate for body composition analysis. This research has been conducted using the UK Biobank Resource.